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Abstract 

Electric vehicles (EVs) are critical to the transition to a low-carbon transportation system. The 

successful adoption of EVs heavily depends on energy consumption models that can accurately 

and reliably estimate electricity consumption. This paper reviews the state of the art of EV energy 

consumption models, aiming to provide guidance for future development of EV applications. We 

summarize influential variables of EV energy consumption in four categories: vehicle component, 

vehicle dynamics, traffic, and environment-related factors. We classify and discuss EV energy 

consumption models in terms of modeling scale (microscopic vs. macroscopic) and methodology 

(data-driven vs. rule-based). Our review shows trends of increasing macroscopic models that can 

be used to estimate trip-level EV energy consumption and increasing data-driven models that 

utilize machine learning technologies to estimate EV energy consumption based on a large volume 

of real-world data. We identify research gaps for EV energy consumption models, including the 

development of energy estimation models for modes other than personal vehicles (e.g., electric 

buses, trucks, and nonroad vehicles), energy estimation models that are suitable for applications 



related to vehicle-to-grid integration, and multiscale energy estimation models as a holistic 

modeling approach. 
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1. Introduction 

The transportation sector is a major energy consumer and contributor to air pollution. Governments 

around the world are taking steps to address energy and air pollution problems caused by 

transportation. A portfolio of strategies should be employed to mitigate transportation-related air 

pollution and reduce transportation’s dependence on fossil fuels [1]. Transportation electrification 

is among the approaches promoted by industry, public agencies, and research communities. 

Electric vehicles (EVs) are considered one option to achieve low-carbon transportation systems. 

Countries around the globe are setting aggressive targets to promote EVs or even proposing to ban 

the future sale of internal combustion engine vehicles [2]. Norway, for example, wants EVs to 

account for 100% of its new-car sales by 2025. China aims to reach 7 million annual EV sales by 

2025, which is equivalent to one fifth of its domestic market demand. France, United Kingdom, 

and California in the United States have proclaimed that they will end sales of internal combustion 

engine vehicles by 2040. The automotive industry expects EVs to become the major powertrain in 

the vehicle market by 2030 [3]. 

 

Despite the environmental benefits and rapid growth of EVs in the global market, “range anxiety” 

(i.e., user’s concern about the insufficient all-electric range of an EV to reach a destination or 

charging point) is considered a major barrier that limits their wide adoption [4]. Reliable and 

accurate estimation of EV energy consumption can significantly mitigate range anxiety and help 

EV users can arrange their itineraries accordingly [5]. Additionally, vehicle-to-grid integration has 

drawn a tremendous amount of attention from research and industry communities in recent years, 

wherein EVs can communicate with the power grid to provide short-term demand response 

services that can balance loads (e.g., peak shaving) in the grid [6]. In this case, the EV energy 



consumption model can play an important role because it allows optimal management of EV 

battery charging and discharging activities with the consideration of integrated system efficiency 

in terms of energy use and transportation needs. 

 

However, estimating the electricity consumption of an EV is a challenging problem. Various 

factors influence electricity consumption. In addition, the model setup can significantly vary 

depending on the granularity (in both time and space) of estimation. Over the years, a considerable 

amount of research has been conducted to gather insights into energy consumption estimation 

modeling of EVs. The majority of models can be classified from two perspectives: modeling scale 

and modeling methodology. Modeling scale refers to the spatial–temporal resolution of energy 

estimation results, which can be as detailed as an energy consumption rate (e.g., kWh per second) 

or averaged at the individual road link or trip level (e.g., kWh per mile). In literature, modeling 

scale is determined based on both the purpose of study and data availability. Methodologies of 

existing models can be roughly classified into rule-based and data-driven. Rule-based models 

adopt a “white-box” approach that follows some fundamental physics laws and mimics the 

dynamics and interactions of various vehicle and powertrain components to estimate energy 

consumption. Data-driven models draw on a “black-box” approach so that users do not need to 

understand the physical process of electricity generation and consumption, or even the principles 

governing vehicle dynamics and powertrain operation, but instead rely on the exploration of the 

statistical relationship between inputs and energy outputs with certain assumptions or statistical 

techniques. 

 



This study aimed to provide a broad perspective of EV electricity consumption estimation and 

support the improvement of models and development of emerging EV applications. This review 

focused on papers published after 2010 because this decade witnessed a surge of publications on 

EVs. The remainder of the paper is organized as follows. Section 2 provides background 

information on mechanics and components of EVs. Section 3 involves a taxonomy analysis of 

influential variables for EV energy estimation. Section 4 and Section 5 classify and discuss existing 

EV electricity consumption models in the literature based on their modeling scale and modeling 

methodology. Section 6 and Sections 7 summarize possible applications of EV electricity 

consumption models and offer concluding thoughts. 

 

2. Background 

2.1. EV Types and Configuration 

In a broad definition, EVs refer to road vehicles whose propulsion involves electricity [7], 

including battery EVs (BEVs); hybrid EVs; plug-in hybrid EVs; and fuel-cell EVs. Figure 1 

illustrates a general EV configuration, which is composed of three major subsystems: electric 

propulsion, energy source, and auxiliary. As shown in the figure, the electric propulsion subsystem 

consists of motor(s), transmission, power converter, and electronic control units. The energy 

storage unit, energy management unit, and energy refueling unit comprise the energy source 

subsystem. In practice, the most widely adopted energy storage device for EVs is a battery, due to 

their characteristics in terms of high energy density, compact size, and reliability [8]. Other devices 

may include an ultra-capacitor, flywheel, and hydrogen tank, which can be utilized as an auxiliary 

energy source or hybrid energy source [9,10]. The auxiliary subsystem involves the auxiliary 

power supply unit, power steering unit, and A/C control unit. 



 

In this study, we focused on BEVs, which solely rely on energy stored in battery packs to provide 

power to the drivetrain. Therefore, their range depends directly on the battery capacity and other 

factors, including vehicle characteristics (e.g., configuration, weight), driving style, roadway 

conditions, and weather. To date, there are BEV configurations that may vary in: (a) the number 

of motors used (i.e., single motor, dual motors, and four motors); (b) the motor–transmission 

connection, such as multigear transmission with clutch, fixed gearing with or without differential, 

and in-wheel motors; and (c) the position of tractive power provision, i.e., front-wheel drive, rear-

wheel drive, and all-wheel drive. The selection of different configurations mainly depends on the 

consideration of size, compactness, weight, cost, reliability, and performance (e.g., maximum 

cruising speed, gradeability, and acceleration) [11]. 

 

Figure 1. A representative configuration of EV. 
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2.2. BEV Energy Consumption and Regenerative Braking 

Due to limited charging facilities and battery capacities, as well as long charging times, estimating 

BEVs’ energy consumption is critical for not only environmental sustainability but also market 

adoption. For BEVs, energy consumption is an integration of the power output measured at the 

battery terminals (unit in kWh), where the battery charging and discharging modes should be 

handled separately [12]. 

 

During the propulsion mode, the batter power output	𝑃!"#	(W) can be estimated by dividing the 

tractive power at wheels	𝑃$%&&' 	(W) by the powertrain’s efficiency, which may consider the power 

losses in motor drive and transmission. The tractive power at the wheels is the product of the 

vehicle speed	𝑣	(m/s) and tractive force at the wheels	𝐹$%&&' 	(N), which can be approximated as 

the sum of the rolling resistance 	𝐹(( 	 (N), the aerodynamic force 	𝐹)* 	 (N), the road gradient 

force	𝐹(+	(N), and the acceleration force	𝐹),,&' 	(N). More specifically, 
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where 	𝜂-	 and 	𝜂#	 represent the efficiencies of electric motor(s) and transmission, 

respectively;	𝐶( 	and	𝐶* 	are the coefficients associated with rolling resistance and aerodynamic 

drag, respectively; 	𝑚	 (kg) is the vehicle mass; 	𝑔	 (9.81 m/s2) is the standard gravitational 

acceleration;	𝛼	(rad) stands for the road gradient;	𝜌)	(1.2 kg/m3) refers to the air density;	𝐴2	(m2) 

is the vehicle’s effective cross-sectional area; and	𝛿	(constant) is the vehicle rotational inertial 

factor. Note that the nontraction load (e.g., A/C or lighting load) is not considered in the equation, 

and wheel slip is ignored. 



 

The battery charging mode for BEVs usually occurs during coasting and braking, when the 

vehicle’s kinetic energy—wasted in conventional vehicles—can be partially utilized to generate 

electricity to the supply side, which is known as regenerative braking. In other words, part of the 

braking energy can be recovered by operating the motor as a generator and transferred power into 

the battery. During the regenerative braking mode, the power at the battery terminals can be 

estimated as 

𝑃34 =
5.
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where	𝑘	(0 <	𝑘	<1) is the regenerative braking factor, indicating the percentage of the overall 

braking energy that can be recovered by the electric motor(s). In BEVs, the regenerative braking 

system has to couple with the friction brake, because the regenerative braking itself is not capable 

of generating enough power to fully stop the vehicle and the addition of friction brake can serve a 

safety purpose. Therefore, the total energy consumption from the battery 	𝐸6)##	related to the 

motion of BEVs is 

𝐸6)## = ∫ 𝑃6)##
7
# 𝑑𝑡	  (3) 

Where	𝑃6)## = 𝑃!"#	in traction mode and	𝑃6)## = 𝑃34	in braking mode. 

 

3. Taxonomy of Influential Variables on EV Energy Estimation 

3.1. Types of Variables 

The energy consumption of an electric vehicle is influenced by a wide range of variables, which 

can be classified into four categories: (a) vehicle component related, (b) vehicle dynamics related, 

(c) traffic related, and (d) environment related. These variables are used in both disaggregated (i.e., 

original or instantaneously measured) and statistically or spatiotemporally aggregated formats. 



 

3.1.1. Vehicle Component-Related Variables 

Vehicle component-related parameters govern the operating states of key parts for propulsion (e.g., 

electric motors, mechanical transmissions) and energy flows in the energy storage and auxiliary 

subsystems (Figure 1). For example, motor and transmission efficiencies determine the portion of 

generated energy from the source that can be used for propulsion [13-16, 84, 85, 95, 100, 105]. 

They vary based on specific configurations of EVs and motor and transmission technology. The 

battery state of charge (SOC) is found to affect the energy consumption rate of EVs [13, 19-22]. 

Studies have shown that the battery SOC can influence the instantaneous battery charging and 

discharging mechanism and efficiency; thus, it is also considered a critical explanatory variable 

[13, 22]. Other studies found that the initial battery SOC can aggravate or mitigate the range 

anxiety of EV drivers and subsequently adjust their driving behaviors, which can affect energy 

consumption [19-21]. Battery quality, i.e., degradation, is used to estimate changes in the trip-level 

energy consumption rate for EVs at different ages [103]. The auxiliary power that supports the 

operation of air conditioning, radio, monitor panel, and lights is nontrivial under certain 

environmental conditions. Studies have assumed auxiliary load to be either at constant load or 

estimated using environmental conditions based on real-time measured auxiliary load data [14, 17, 

20, 23, 112, 113]. With the advent of enabling technologies for connected and automated vehicles, 

such as on-board sensors (e.g., LiDAR, camera), edge computing and processing units (e.g., GPU), 

and wireless communication devices, the energy consumption on these auxiliary loads may raise 

additional concerns. This topic could attract further attention by researchers and engineers in the 

future. In addition, studies have directly built statistical relationships between vehicle 

specifications (e.g., engine size, engine technologies, transmission type and efficiency) and energy 



consumption [83]. Coefficients of rolling resistance and aerodynamics are included in models that 

estimate EV energy at each second of driving according to the laws of physics, as shown in 

Equation (1) [86, 91-94, 104-106]. 

 

3.1.2. Vehicle Dynamics-Related Variables 

Vehicle dynamics cover factors that reflect the motion (including speed, acceleration, and tractive 

or brake torque) of a vehicle or flow of vehicles. The laws of physics govern direct relationship 

between these factors and (kinetic) energy demanded by vehicles. Therefore, these variables are 

commonly used in EV energy estimation models. In existing literature, vehicle dynamics data are 

seen at an instantaneous level (e.g., every second) or certain aggregated levels (e.g., trip, road link, 

5 minutes, etc.). Speed serves as a key parameter to estimate the road loads that are physically 

related to rolling resistance, aerodynamic drag, and road gradient as depicted in Equation (1) [13-

16,18]. Instantaneous speed and its higher orders (up to the third order) show a strong correlation 

with instantaneous EV energy consumption [22, 24-27, 84, 85, 93-95, 100, 104-106]. When energy 

consumption is estimated at the trip level, average speed [19, 28, 29, 101] and its higher order [30-

34] are considered. Other statistics related to speed and acceleration have also been used by 

researchers for EV energy consumption estimation. For example, studies [35, 36] noted the highest 

instantaneous speed and acceleration as surrogate driving behavior modes of drivers and used those 

features to estimate trip-level energy consumption of EVs. Distribution of speed during a trip is 

considered a metric to represent the driving behavior of drivers as a way to estimate energy 

consumption of EVs [87]. Profile of speed trajectory is used to estimate possible regenerative 

braking potential of EVs [88]. Kinetic energy and its change are also highly related to the energy 

consumed by EVs in motion. Qi et al. [37] used cumulative positive or negative changes in the 



kinetic energy rate (as described below) during a trip as influential variables to estimate EV energy 

consumption and achieved reasonable estimation performance. 
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where	𝑑3 	is the cumulative travel distance up to the i-th step. Vehicle-specific power is another 

conventionally defined term to represent the instantaneous vehicle tractive power normalized by 

the mass. Studies either try to establish relationships between instantaneous vehicle-specific power 

and energy consumption or distribution of vehicle-specific power over a short driving period, also 

referred as snippets, and average energy consumption rate in that period [33,38]. 

 

3.1.3. Traffic Conditions-Related Variables 

Traffic conditions, such as downstream traffic signal status, congestion levels, and vehicle type 

mix in traffic flow, can influence EV energy consumption. Particularly, they are used to estimate 

or validate vehicle dynamics along the downstream segment or rest of the travel route, thus 

improving overall energy consumption estimation. Traffic conditions-related factors can be 

classified as categorical and interval variables. Categorical variables determine whether a trip is 

conducted in certain time or spatial resolution, e.g., time of day (i.e., peak hours vs. nonpeak hours), 

day of week (such as weekdays, weekends, or holidays), or month (e.g., seasonal effect). Fetene 

et al. [19] built a multiple linear regression model that includes “rush hour” as a dummy variable 

to identify whether a trip happened during peak periods (in the morning or afternoon). Masikos et 

al. [20] proposed a general regression neural network [39] model and used categorical variables to 

represent trip time by day of the week, month of the year, and hour of the day, and the model 



results showed the statistical significance of those variables in estimating EV energy consumption. 

Interval variables represent traffic conditions as a function of continuous vehicle dynamics or 

overall traffic states. The ratio of idle time or number of stops over travel time can be used as an 

indicator of traffic conditions (more congested if the ratio is higher) during a trip. Studies [28, 35, 

40, 102] used this variable and found it to be statistically significant in EV energy models. Efforts 

have been made to create indexes of congestion that can be used to estimate energy consumption 

of EVs. Other studies [28, 89, 99] defined a congestion index (i.e., mean vehicle speed divided by 

standard deviation of speed) and found its significance in the model. 

 

3.1.4. Environment-Related Variables 

Environment-related factors represent information about roadway characteristics or 

meteorological conditions. These variables influence energy consumption by introducing 

disturbance to the road or auxiliary loads (e.g., A/C power) for EVs. Widely used variables include 

road grade [84, 85], road type [19, 22, 41], wind direction, wind speed [23, 19, 41], ambient 

temperature and humidity [20, 21], and lighting conditions [42]. For example, changes in road 

elevation (i.e., road grade) affect tractive forces needed to overcome road gradient resistance. With 

advancement in outdoor positioning technology, road grade information becomes available in real 

time, and a plethora of studies have used it in EV energy estimation models at either the second-

by-second level [15, 16, 17] or trip level [20, 23, 27, 28, 31, 32, 34, 40, 41, 43, 44, 84, 85, 92, 100, 

101,106]. Another commonly used roadway characteristic-related variable in existing studies is 

road type, i.e., freeway vs. arterial [19, 22, 41, 90]. Infrastructure attributes of roads, such as traffic 

lights and speed limits, are used as continuous independent variables to estimate energy 

consumption of EVs traveling on roads [98]. Temperature and humidity are meteorological 



variables that may affect auxiliary power for heating or cooling demand and the operational 

performance of battery packs in EVs. Because meteorological conditions change gradually over a 

relatively long time, related variables are usually included in trip-level energy consumption 

estimation models [19, 20, 23, 27-29, 31, 41, 45, 96, 97], with the focus of their impacts on 

auxiliary power demand. Sun et al. tried to explore the relationship between meteorological 

parameters and battery performance by measuring the temperature at battery cells, but they did not 

include these variables in their proposed model [21]. In a regression model developed by Liu et al. 

[42], a dummy variable was adopted to represent day or night, and the lighting condition had a 

strong correlation with EV energy consumption. Ambient temperature and humidity are either 

measured or estimated based on longitude and latitude of driving location to estimate potential 

energy consumption for in-cabin cooling and heating [96, 97, 107]. 

 

3.2. Aggregation and Disaggregation of Variables 

Influential variables for EV energy estimation models can be also classified into two categories, 

i.e., disaggregated data and aggregated data. Disaggregated variables refer to data that have the 

same time or spatial interval as in the collection experiment. The frequency of data collection 

varies depending on the nature of studies. Data collected at 1 second or finer intervals are 

commonly seen in studies that collect data using on-board diagnostics equipment. Common 

disaggregated input data include 1Hz vehicle speed and acceleration [22, 24, 25, 27, 30], 1Hz 

vehicle specific power [26, 54], 1Hz kinetic energy [37], 1Hz road grade [15, 16], 1Hz battery 

state of charge [13, 22], or certain other statistics (e.g., maximum or minimum speed) of these data 

[19]. Other variables are usually collected at a large time interval because their values do not 

change frequently, which include rush house index (whether the travel time is during rush hour) 



[19,42]; congestion index or ratio of idling or stops during a trip or a link travel [28]; road type 

[19,22]; meteorology conditions of wind, humidity, and temperature [20, 21, 23, 27-29, 31]; 

infrastructure attributes (such as whether a road has traffic lights) [41]; and vehicle attributes (such 

as weight) [20]. 

 

Table 1. Summary of Literature on EV Energy Prediction for Microscale Models (red) and Macroscale Models (blue) 

Year 
Veh. 

Type 

Methodology Predicting Variable 
Data Source 

  

 

Ref. 

 
Data-driven Rule-based Dynamics Traffic Environment Component 

2011 PC* X  X  X X Simulation [85] 

2011 PC X  X    Simulation [88] 

2011 PC  X X   X Simulation [93] 

2012 PC X  X    Real-world [87] 

2012 PC X  X  X X Real-world [101] 

2012 PC  X X   X Simulation [104] 

2013 PC X  X  X  Real-world [90] 

2013 PC  X X   X Simulation [91] 

2013 PC X   X   Simulation [99] 

2014 PC X  X   X Simulation [86] 

2014 PC X   X       Real-world [26] 

2014 PC X   X       Real-world [43] 

2014 PC   X X     X Simulation [46] 

2014 PC  X X   X Simulation [94] 

2014 PC X  X X X X Real-world [108] 

2015 PC  X X  X X Real-world [92] 

2015 PC   X X     X Simulation [14] 

2015 PC   X X     X Real-world [16] 

2015 PC X   X X X X Real-world [20] 



2015 PC X   X       Real-world [22] 

2015 PC X   X       Real-world [25] 

2015 PC X   X X   X Real-world [40] 

2015 PC  X X  X X Simulation [84] 

2015 PC X   X X  Real-world [89] 

2015 PC  X X   X Simulation [95] 

2015 PC X    X  Real-world [96] 

2015 PC X    X  Real-world [98] 

2015 PC  X X   X Real-world [101] 

2016 PC   X X     X Simulation [13] 

2016 PC   X X   X X Real-world [15] 

2016 PC X   X X X X Real-world [28] 

2016 PC X   X X X X Real-world [42] 

2016 PC   X X     X Real-world [48] 

2016 PC X   X       Real-world [54] 

2016 PC X   X       Real-world [56] 

2016 PC  X X   X Simulation [105] 

2017 PC     X X X X Real-world [19] 

2017 PC X   X   X X Real-world [24] 

2017 PC X   X     X Real-world [27] 

2017 PC X   X     X Real-world [30] 

2017 PC X   X   X X Simulation [34] 

2017 PC X   X   X   Real-world [44] 

2017 PC X   X   X   Real-world [45] 

2017 PC X   X       Real-world [53] 

2017 PC X   X     X Real-world [55] 

2017 Train   X X     X Real-world [60] 

2017 PC X  X  X  Real-world [107] 

2018 PC X   X   X   Real-world [17] 



2018 PC X   X     X Real-world [29] 

2018 PC X   X   X X Real-world [31] 

2018 PC X   X X     Real-world [35] 

2018 Bus X   X       Real-world [36] 

2018 PC X   X   X   Real-world [37] 

2018 PC   X X     X Real-world [41] 

2018 PC X   X       Simulation [47] 

2018 PC   X X     X Simulation [50] 

2018 PC X   X   X   Real-world [57] 

2018 Truck  X X  X X Real-world [106] 

2019 
Non-

Road 
X   X X     Real-world [18] 

2019 PC X   X     X Real-world [21] 

2019 Bus X   X X   X Simulation [23] 

2019 PC   X X     X Real-world [32] 

2019 PC X   X       Real-world [33] 

2019 PC   X X     X Simulation [49] 

2019 PC X   X       Real-world [51] 

2019 PC X   X   X   Real-world [52] 

2019 PC X   X     X Real-world [58] 

2019 Truck   X X   X X Simulation [59] 

2019 PC   X X   X   Real-world [61] 

2019 Bus   X X   X X Real-world [62] 

2019 PC   X X     X Simulation [63] 

2019 PC   X X     X Real-world [64] 

2019 PC X   X   X X Simulation [65] 

2019 PC X   X   X X Simulation [66] 

2019 PC X   X     X Real-world [67] 

2019 PC X    X  Real-world [97] 



2019 PC X        X Simulation [83] 

2019 PC X  X  X X Real-world [100] 

2019 PC X  X X  X Real-world [102] 

2019 PC X     X Real-world [103] 

2019 PC X  X X X  Simulation [109] 

Note: PC = passenger car. 

 

Aggregated variables refer to data that are aggregated after initially collected and presented at a 

different time interval. With on-board diagnostics or GPS technologies, speed and acceleration 

data are easily obtained at 1Hz level and then averaged to different minute or hour levels [21, 23, 

28, 29, 31, 34-36, 40, 41, 43]. In addition, state and local transportation authorities routinely collect 

and publish traffic flow and volume information of roads in their jurisdictions, which are usually 

aggregated at every 5, 15, or 30 minutes or 1 hour. 

 

4. Modeling Scale 

EV energy estimation models can be classified based on their modeling scale, which further 

determine areas of application. 

 

Microscopic-scale models can estimate energy consumption of EV at high frequency, typically 

1Hz. Thus, they have been widely used in applications related to microscopic vehicle dynamics 

and optimal control of EV strings or traffic operations involved with EVs. A representative 

example is EV eco-driving, which uses microscopic models to optimize real-time vehicle control, 

particularly in congestion mitigation on corridors or signalized intersections [24, 47, 56, 109]. EV 

routing studies used microscopic energy estimation models to dynamically determine energy 



efficient routes [13, 59, 108]. Microscale models were developed for evaluating energy 

implications of EV in traffic simulation [15, 26, 30, 32]. 

 

Macroscopic models can explore the relationship between energy consumption and characteristics 

of driving at an aggregated spatial or temporal span. Thus, they are used in applications that require 

energy information of EVs in similar spatial and temporal space, such as EV fleet management, 

region-wide planning of charging infrastructure or EV adoption, large-scale EV-related energy 

portfolio prediction, etc. One study tried to create a map showing EV energy consumption on each 

road link based on link-specific traffic patterns (e.g., average speed) and geometry attributes (e.g., 

number of lanes, link width) [20]. Other studies looked at evaluating EV driving range in 

sustaining future trips [19, 21, 50, 52, 58]. 

 

Figure 2 summarizes the existing relevant studies. As seen from the figure, the number of 

references to energy consumption of EVs has increased since 2011, plateaued between 2015 and 

2018, and then rocketed in 2019. By further differentiating the references by the source of data 

(i.e., real world vs. simulation), we observe that EV energy estimation models based on real-world 

data dominate the literature and the share of macroscale models keeps increasing, which implies a 

promising trend of macroscopic applications in transportation planning and operations for EVs. 

When differentiating the references by vehicle type, we observe that the majority of existing 

studies have focused on passenger cars, whereas a significant knowledge gap is present for other 

vehicle categories, such as transit vehicles, heavy-duty trucks, trains or locomotives, and nonroad 

vehicles (e.g., construction and agriculture equipment). They start to appear in the literature only 

after 2017, which may be due to their slower electrification process compared to passenger cars. 



 

 

Fig. 2: Number of research papers for microscale and macroscale EV energy consumption estimation model for each 

calendar year. 

 

  

Fig. 3: Number of research papers for microscale and macroscale EV energy consumption estimation model by data 

source (Fig. 3a, left) and by vehicle type (Fig. 3b, right) for each calendar year. 



 

5. Modeling Methodology 

According to our review of the literature, existing EV energy modeling methods can be classified 

into three categories: rule-based, data-driven, and hybrid, as shown in Figure 4. 

 

 

Fig. 4: The classification scheme for the state-of-the-art EV energy modeling methods. 

 

5.1. Rule-Based 

The configuration and dynamics of battery EVs are well defined in Section 2. Compared to an 

internal combination engine-powered vehicle, the configuration and energy flow of an EV is less 

complicated. In addition, the component-wise energy efficiency of an EV is less varied. Therefore, 

many studies estimated the EV energy consumption rate (i.e., in the microscale) by following the 

Newton’s law to calculate the tractive power at the wheels and assuming constant powertrain 

efficiency [68-72]. Others developed EV energy estimation models based on car-following models 

and downstream traffic information [73]. To model the regenerative braking effects, some 

researchers applied fuzzy logic [74], whereas others assumed a simple relationship (e.g., as a 

piecewise linear function) with the vehicle’s speed [75]. Although rule-based models are relatively 

simple, their modeling accuracy when applied to a specific vehicle or scenario may not be 

satisfactory. In addition, there are a few challenges to extend the application of these models to a 

macroscopic scale: estimation errors may be accumulated if the energy consumption by a fleet of 
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EVs is concerned, and energy impacts due to the interaction among different players are difficult 

to model in a complicated system (e.g., a region-wide transportation scenario). 

 

5.2. Data-Driven 

Thanks to improvements in sensors, automotive electronics and telematics in recent years, more 

data (in terms of both type and amount) became available for EV energy consumption modeling, 

and a variety of data-driven techniques have been applied. To date, the most widely used statistical 

method is multivariate linear regression [76-80]. These EV energy consumption models usually 

include instantaneous speed of different orders, acceleration of different orders, and their 

interaction terms as the independent variables and assume their relationship with a linear predictor 

function. Due to rapid advancements in advanced machine learning techniques and high-

performance computing, a few representative algorithms such as artificial neural networks [43] 

and long short-term memory [17] have been employed to estimate EV energy consumption. For 

example, artificial neural network models are used to construct highly nonlinear and high-order 

interaction terms between response factors, such as speed, acceleration, etc., and microscopic (e.g., 

1Hz) and macroscopic (e.g., trip-level) energy consumption of EVs. In addition, other 

unsupervised learning methods (e.g., clustering, principal component analysis) have been used for 

data preprocessing or pattern recognition [21, 35, 55, 57]. They are widely used to classify 

application scenarios to improve model accuracy and select the dominant influential variables or 

reconstruct powerful predictors for model interpretability and generalizability. 

 



 

Fig. 5: Number of research papers for EV energy consumption estimation model for each calendar year. 

 

Figure 5 shows that even though the volume of literature related to EV energy consumption has 

increased during the past few years, the number of data-driven models started to increase only after 

2015. However, data-driven models became the dominant methodology in recent years. A further 

glimpse at the records by data source and vehicle type reveals that many studies have focused on 

the development of data-driven models and calibration of model coefficients with real-world data. 

If the vehicle type is differentiated, the data-driven methods have been dominantly used to model 

the energy consumption of electric passenger cars, buses, and nonroad vehicles, whereas rule-

based methods are dominant in estimation models for trucks and trains. 

 



Unlike rule-based methods that usually target microscopic models, data-driven methods can be 

applied to various data sources, such as powertrain and vehicle dynamics, traffic information, 

driving behavior, network profile, and meteorological conditions, with different spatiotemporal 

aggregation levels (e.g., link based, every 5 minutes). In addition, the developed models are usually 

customized for specific vehicles, drivers, or scenarios and their results may be very dataset 

dependent, making it quite challenging to generalize the conclusions. 

 

  

Fig. 6: Number of research papers for EV energy consumption estimation model using rule-based and data-driven 

methods by data source (Fig. 6a, left) and by vehicle type (Fig 6b, right) for each calendar year. 

 

Despite all the advantages, data-driven EV energy consumption models have two main limitations. 

First, data-driven estimation models might not perform satisfactorily outside their trained or test 

datasets. Therefore, it is important to ensure that the datasets used for training are representative 

of the entire population and contain sufficient variety of information. Second, most recent data-

driven models that rely on neural networks are black-box models. Although they have the potential 

to provide satisfactory accuracy, they are limited in explaining details of the different parameters 

and their implications for energy consumption. 

 



To balance the advantages of both rule-based methods (model simplicity and generalization) and 

data-driven methods (model accuracy and customization), Ye et al. [24] proposed a hybrid 

approach to estimating the EV energy consumption rate. In this approach, the feature selection is 

rooted in the physical principles instead of specific datasets, whereas the model coefficients or 

system parameters are trained from the data to achieve customized performance for specific 

scenarios. 

 

6. Case Study on Electric Bus Energy Consumption Estimation 

We conducted a case study that utilized real-world vehicle driving and energy consumption data 

to estimate the energy consumption of a bus under real-world conditions. Specifically, we 

evaluated the impacts of including different variables and adopting different modeling methods on 

both microscopic and macroscopic energy consumption estimation. 

 

The vehicle driving and energy consumption data used in this validation were collected from on-

board measurement equipment on three electric buses operated in Chattanooga, Tennessee. The 

data collection process started in July 2018 and is an ongoing effort. The buses are BYD K9S, 

which are manufactured by one of the largest EV manufacturers in the world, BYD Auto Co., 

Ltd. The collected information included real-time GPS locations (i.e., latitude, longitude), 

vehicle activities (instantaneous speed, acceleration, and RPM), energy-related parameters (i.e., 

energy consumption rate, state of charge), and meteorological data (ambient temperature and 

humidity), all at 1Hz frequency. The driving cycles of transits running on those routes are shown 

in Figure 7. The driving cycles have a speed up to 60 to 80 kph and an acceleration range of -2 to 

2 kph per second. 



 

 

Figure 7. Driving cycles of buses 

 

We summarize the input variables for both micro and macro prediction models in Table 2. 

 

Table 2. Description of Input Variables for Microscopic and Macroscopic Energy Consumption Model 

 Symbols Descriptions 

M
ic

ro
sc

op
ic

  

𝑡 Index of second 

𝑣# Instantaneous speed at second t (km / h) 

𝑎# Instantaneous acceleration at second t (km / h / second) 

𝑑# Instantaneous motor speed at second t (revolution / min) 

𝑤# Ambient temperature at second t (Celsius degree) 

𝑞# Ambient humidity at second t (%) 

𝑔# Road grade at second t (%) 

𝑉𝑆𝑃# Instantaneous vehicle-specific power at second t (kW/ton) 



 M
ac

ro
sc

op
ic

 
𝑣' Average speed of the vehicle passing through link l (km / h) 

𝑤' Average ambient temperature of the vehicle through link l (C) 

𝑞' Average humidity of a vehicle through link l (%) 

𝑔' Net road grade of the vehicle passing through link l (%) 

𝑣'1 Square speed of the vehicle passing through link l 

𝑣'@ Cubic speed of the vehicle passing through link l 

 

With the input variables at micro and macroscopic levels, we constructed models with different 

combinations of input variables and linear regression or neural network modeling methods. 

These two methods are most common in literature. We randomly divided the data into training 

and testing datasets and compare their prediction performance. We adopt mean absolute scaled 

error (MASE) as a measure of forecast accuracy to compare the performance of the energy 

consumption rate estimation model. Hyndaman and Koehlers [111] proposed MASE to serve as 

a generally applicable forecast error measurement that is independent of the scale of data and has 

better predictable behavior when the dependent variable is close to zero. MASE is calculated as 

follows: 

𝑀𝐴𝑆𝐸 = 	
1
𝑛G H

|𝑃A −	𝑃KA|
1

𝑛 − 1∑ |𝑃3 −	𝑃K3<B|4
3C1

M
4

ACB
 

where	𝑃	is observed energy consumption rate,	𝑃K	is the estimated energy consumption rate, 

and	𝑛	is the total number of observations in the testing dataset. We summarize the various model 

setup and their prediction performance in terms of MASE in Table 3. Model 1 to Model 3 are 

microscopic models containing predictive variable on dynamics (Model 1); dynamics and 

components (Model 2); and dynamics, components, and environment (Model 3). The prediction 



performance comparison shows that the MASE values of neural network models are always 

lower, indicating better prediction accuracy, than those of linear regression of the same model. 

And inclusion of more predictive variable led to better prediction performance. Similar patterns 

were observed in macroscopic models as well. 

 

Table 3. Optimal Model Configuration and Performance Metric 

 Predicting Variable Methodology MASE 

M
ic

ro
sc

op
ic

 

Model 1:	𝑣# , 𝑎# 

 

LR 4.92 

ANN 1.89 

Model 2:	𝑣# , 𝑎# , 𝑑# , 𝑉𝑆𝑃# 

 

LR 4.15 

ANN 1.48 

Model 3:	𝑣# , 𝑎# , 𝑑# , 𝑉𝑆𝑃# , 𝑤# , 𝑞# , 𝑔# 

 

LR 2.46 

ANN 0.33 

M
ac

ro
sc

op
ic

 

Model 4:	𝑣𝑙, 𝑣𝑙2, 𝑣𝑙3	 LR 4.56 

ANN 1.25 

Model 5:	𝑣𝑙, 𝑣𝑙2, 𝑣𝑙3,𝑤𝑙, 𝑞𝑙, 𝑔𝑙 LR 2.75 

ANN 0.40 

Note: LR = linear regression; ANN = artificial neural network 

 

7. Discussion 

It is self-evident that different energy consumption models are suitable for different energy-

focused EV applications. Figure 7 presents some typical scenarios of EV energy model 

applications across scales. For example, energy consumption rate models are applicable to the 



development of eco-driving (mainly longitudinal maneuvers) systems for individual EVs or eco-

friendly traffic signal control at intersections. Aggregated models may fit well for region-wide EV 

applications considering a long-term effect. 

 

Fig. 8: EV energy model applications under different time resolutions. 

 

The results of this review indicate some research areas that may require more attention: 

1) Energy estimation for vehicles other than passenger cars: The majority of up-to-date 

literature on EV energy estimation model has focused on passenger cars. However, 

significant progress has been witnessed in the development of freight and transit 

electrification. Given the fact that trucks consume more than 20% of total transportation 



energy [81] and public transit is deemed a viable solution to transportation challenges in 

many developing countries or populated areas, more research should be conducted on 

modeling the energy consumption of electric trucks and buses. 

2) Application for vehicle-to-grid integration: Vehicle-to-grid technology is considered as an 

emerging and cost-effective solution to optimizing both EV use and power grid operation 

in a cooperative manner. One challenge in vehicle-to-grid integration systems is finding a 

computationally efficient algorithm that can handle real-time EV energy consumption 

analysis and large-scale charging facility scheduling optimization [82]. Specifically, the 

embedded EV energy consumption model should be capable of estimating and comparing 

EV energy consumption over different candidate driving scenarios. 

3) Development of multiscale EV energy estimation models: Multiscale models can 

simultaneously cover important features at different resolutions of time and space. Such an 

integrated modeling approach may preserve information at different levels, from individual 

components to traffic, in a collective manner. All existing studies have focused on either 

microscale or macroscale EV energy estimation. It will be useful to develop multiscale EV 

energy estimation models that can provide consistent information for energy estimation 

across scales. However, one major challenge would be to develop algorithms or 

methodologies to find accurate and efficient solutions to multiscale modeling problems. 

 

8. Conclusion 

This paper presents an overview of recent research efforts in the area of EV energy consumption 

estimation. Energy consumption estimation models were reviewed in terms of influential variables 

(vehicle components, driving dynamics, traffic, environment), modeling scale (microscopic vs. 



macroscopic), and methodology (rule-based vs. data-driven). The properties of the data used for 

these models were also reviewed, including the source of data (simulation vs. real world), type of 

vehicles to be modeled (car, truck, bus, train, or nonroad vehicles), and publication year (2011–

2019). 

 

Vehicle component factors determine the operation of key parts for propulsion and energy flow in 

vehicles. They are naturally used in rule-based models at the micro scale because their changes 

can instantaneously and directly influence energy output of the electric motor. But certain 

aggregated formats of these factors are also witnessed in data-driven macroscale models in recent 

literature. Vehicle dynamics factors represent the motion of vehicles. The instantaneous or 

aggregated formats of vehicle dynamics are most widely used for EV energy modeling, regardless 

of the modeling scale or methodology. Traffic condition factors can be used to supplement 

information provided by vehicle dynamics. Traffic at one time is equal to instantaneous speed in 

vehicle dynamics. Therefore, microscale models do not consider traffic factors. Macroscale 

models use traffic factors as a proxy for vehicle dynamics in a certain period of time. Environment 

factors mainly relate to roadway characteristics or meteorological conditions. They are commonly 

used in macroscale models, especially road grade, which is used in both micro- and macroscale 

models. 

 

According to the summary, data-driven EV energy consumption estimation and its applications 

have been attracting increasing research attention in recent years, whereas rule-based models 

dominate earlier literature. In addition, a growing number of macroscale models in the literature 

has been observed in recent years. Although models with different scales may be developed to 



serve different purposes and application scenarios, efforts toward multiscale model development 

would be valuable as an integrated solution to preserving information consistency from various 

spatiotemporal resolutions and aggregated levels. 
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