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ABSTRACT
Many transit agencies operating paratransit and microtransit ser-

vices have to respond to trip requests that arrive in real-time, which

entails solving hard combinatorial and sequential decision-making

problems under uncertainty. To avoid decisions that lead to signifi-

cant inefficiency in the long term, vehicles should be allocated to

requests by optimizing a non-myopic utility function or by batching

requests together and optimizing a myopic utility function. While

the former approach is typically offline, the latter can be performed

online. We point out two major issues with such approaches when

applied to paratransit services in practice. First, it is difficult to

batch paratransit requests together as they are temporally sparse.

Second, the environment in which transit agencies operate changes

dynamically (e.g., traffic conditions can change over time), causing

the estimates that are learned offline to become stale. To address

these challenges, we propose a fully online approach to solve the

dynamic vehicle routing problem (DVRP) with time windows and

stochastic trip requests that is robust to changing environmental

dynamics by construction. We focus on scenarios where requests

are relatively sparse—our problem is motivated by applications to

paratransit services. We formulate DVRP as a Markov decision

process and use Monte Carlo tree search to evaluate actions for any

given state. Accounting for stochastic requests while optimizing a

non-myopic utility function is computationally challenging; indeed,

the action space for such a problem is intractably large in practice.

To tackle the large action space, we leverage the structure of the

problem to design heuristics that can sample promising actions

for the tree search. Our experiments using real-world data from

our partner agency show that the proposed approach outperforms

existing state-of-the-art approaches both in terms of performance

and robustness.
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1 INTRODUCTION
The vehicle routing problem (VRP) is a well-known combinatorial

optimization problem that seeks to assign a fleet of vehicles to

routes to serve a set of customers/requests [7]. Many real-world

use cases of transportation agencies are modeled by the dynamic

version of the problem (DVRP) with stochastic trip requests. In such

settings, some customer requests may be known at the time of plan-

ning while others are unknown, and some stochastic information

may be available about potential future requests [3]. Although the

dynamic and the stochastic versions have traditionally been tackled

separately, Bent and Van Hentenryck [3] and Hvattum et al. [13],

among others, showed that dynamic planning could use the sto-

chastic information to improve performance. There are three broad

approaches for solving DVRPs with stochastic requests. First, as

requests arrive, a group of requests can be batched together, and

routes can be optimized myopically for the particular batch in an

online manner [1]. Second, the routing problem can be solved to

maximize a non-myopic utility function by learning a policy in

an offline manner that maps any given state of the problem to an

action (i.e., a route plan for the vehicles) [21]. Third, a combina-

tion of offline computation and online heuristics can be used for

non-myopic planning [3, 15].

A fundamental challenge in solving the DVRP non-myopically is

computational tractability; indeed, real-world applications of DVRP

are often intractable since they entail solving a hard combinato-

rial optimization problem with consideration for future requests.

Prior work based on the combination of offline learning and on-

line heuristics has addressed this bottleneck to some extent. Bent

and Van Hentenryck [3] continuously generate and store a pool

of promising plans. Then, at the time of execution, they use a

least-commitment strategy to select a key plan from the pool. Shah

et al. [29] use approximate dynamic programming and leverage

a neural network-based approximation of the value function to

handle the complexity from combinations of passenger requests.

Joe and Lau [15] ensure near real-time response by combining on-

line routing-based heuristics (e.g., simulated annealing) with offline

approaches (e.g., value function approximation) [15]. Myopic ap-

proaches, on the other hand, focus on pooling requests together to

optimally allocate a specific batch of requests to routes [1]. A major

challenge in such a setting is computing solutions fast enough to

assign vehicles to requests in real-time (in practice, some delay is

acceptable after a request is made). Hence, myopic approaches that

operate in an online manner must be anytime or able to compute a

feasible action quickly; requests are stochastic and a decision must

be computed before future requests arrive. Alonso-Mora et al. [1]

scale a myopic approach to assigning routes to pooled requests

for real-world use cases by using an anytime algorithm that starts

from a greedy solution and then improves it through constrained

optimization.

We focus on paratransit services [20] in this paper, which are

an important real-world example of DVRPs. Paratransit service is

a socially beneficial curb-to-curb transportation service provided

by public transit agencies for passengers who are unable to use



fixed-route transit (e.g., passengers with disabilities). Our partner

agency, the Chattanooga Area Regional Transportation Authority

(CARTA), operates paratransit services in a mid-sized metropolitan

area in the USA. While paratransit services resemble traditional

on-demand ride-pooling services in some ways (e.g., the arrival

of real-time requests and ride-sharing), our collaboration revealed

some crucial differences between canonical examples of DVRPs

in prior literature (e.g., ride-pooling or cargo delivery) and para-

transit services. First, the frequency of requests is usually lower

than services like taxis. For example, CARTA operates paratransit

services in a metropolitan area with about 1.8 million people and

usually serves about 200 requests per day (with 10 hours of opera-

tion each day). This constraint makes it difficult to batch requests

together for myopic algorithms. Note that while the requests are

temporally sparse, the decision for each request must be computed

quickly. Second, paratransit services operate under the Americans

with Disabilities Act (ADA), which enforces time windows as a

hard constraint, unlike on-demand taxi services, thereby requiring

strict adherence to such constraints. Our discussion with CARTA

also revealed a potential issue with offline approaches for solving

DVRPs. In practice, the environment in which CARTA operates

is highly dynamic; traffic conditions in a city can change due to

construction, events, or accidents, and the number of available ve-

hicles or drivers can vary. In such cases, offline approximations can

potentially lead to decisions that are far from optimal.

This paper introduces a fully online approach for use-cases such

as paratransit services that is anytime, non-myopic, robust to dy-

namic changes in the environment, and also scalable to real-world

applications. Designing a completely online approach to solve

DVRPs in a non-myopic setting is extremely challenging — the

action space for such a problem is intractably large for real-world

applications. For example, for our partner agency in a midsize met-

ropolitan city in US with five vehicles, each with a capacity of eight

passengers, the action space is of the order of 10
22
. Also, note that

while requests are relatively sparse in our problem setting (one re-

quest every fewminutes on average), computation for each decision

needs to be fairly quick; naturally, it is infeasible to keep customers

waiting for more than some exogenously defined duration.

The summary of contributions are as follows: (1) We design

a fully online and non-myopic solver for DVRP with stochastic

requests that scales to real-world problems by leveraging the struc-

ture of the problem instance. Our approach, MC-VRP (Monte Carlo
tree search based solution for vehicle routing problem) is robust to

environmental dynamics by construction. (2) We model the DVRP

as a route-based Markov decision process (MDP) [31]. Given an

arbitrary state of the MDP, we use generative models over cus-

tomer requests and travel time to simulate the environment under

consideration, which in turn enables us to use Monte Carlo tree

search [19] to find promising actions for the state. Our approach

does not require offline training, the only requirement is a gen-

erative model that can be sampled at run-time. (3) To tackle the

intractably large action space, we leverage the structure of the prob-

lem to find promising actions. Specifically, given a set of routes and

a new request, we create a weighted graph based on a budget-based

heuristic whose edges represent: (a) which vehicles can serve the

new request, and (b) which vehicles can swap unpicked requests

from their routes to maximize utility. Then, we sample independent

sets from the graph that correspond to feasible actions for the given

state of the MDP.

To evaluate the proposed approach, we consider three baselines.

First, we look at a greedy strategy, which assigns a new request

to the vehicle that provides the highest myopic utility. Second, we

look at recent work by Joe and Lau [15], which outperformed well-

known state-of-the-art approaches such as the multiple scenario-

based approach [3] and the approximate value iteration [34]. Third,

we compare our approach with a batched myopic setting by using

the work by Alonso-Mora et al. [1]. Our experimental evaluations

show that MC-VRP approach outperforms the baselines in terms of

performance and robustness to changing environmental conditions.

2 PROBLEM DESCRIPTION AND MODEL
Typically, in paratransit services, passengers request pick-up times

in advance of the trip, evenwhen requesting on the same day. This is

in contrast of on-demand ride services that are often requested with

a short lead time. For example, customers can call in the morning

to request for a ride during early afternoon. However, in some

cases customers request rides with a short lead time. We assume

that requests are i.i.d. according to a distribution 𝐷 . We denote the

request at a given time 𝑡 by 𝑅𝑡 , which consists of a pick-up location,

a drop-off location, a pick-up time, and a drop-off time.

In practice, it is common for paratransit services to use a pick-

up window, e.g., they commit to picking passengers up at most 15

minutes before the requested pickup time and drop them off at most

15 minutes after the requested drop-off time. For a request 𝑅𝑡 , we

refer to such time points as the earliest pick-up time (denoted by 𝑒𝑡 )

and the latest drop-off time (denoted by 𝑝𝑡 ). Naturally, the latest

drop-off time must be greater than the sum of the earliest pick-up

time and the minimum time it takes to travel to the drop-off location

from the pick-up location. We assume that requests follow such

constraints. In practice, the application used for making requests or

a human operator can enforce such constraints. Note that the time

windows specified by the customers are treated as strict guidelines

making this a pickup and delivery problem with time-windows

(PDPTW) [8]. In case constraints cannot be met, the system rejects
requests. Given this setting, the goal of the decision-maker is to

maximize the total number of requests that can be served in a day

while ensuring that the pick-up and drop-off constraints are met.

2.1 Route-based Markov Decision Process
Our problem consists of a set of identical vehicles, denoted by 𝑉 ,

each with a capacity of 𝑐 passengers. The set of all possible locations

in the area is represented by the graph𝐺 = (𝐿, 𝐸), where 𝐿 denotes

the set of vertices (or locations) in the graph, and 𝐸 denotes the set

of edges weighted by travel time. A route plan for vehicle 𝑣𝑖 ∈ 𝑉
at time 𝑡 is denoted by 𝜃𝑖𝑡 , which is an ordered sequence of pick-

up/drop-off locations that the vehicle needs to visit in its route.

Therefore, a route plan 𝜃𝑖𝑡 can be represented as an ordered set

{𝑙1, 𝑙2, . . .}, where each 𝑙𝑖 ∈ 𝐿 is a vertex of graph 𝐺 . At any given

time 𝑡 , the set of all feasible route plans is denoted by Θ𝑡 (we define
feasibility below). We assume that vehicles start operations at a

depot and return to the depot at the end of the day (𝑑𝑒𝑝𝑜𝑡 ∈ 𝐿).
To solve the problem of identifying the best routes for all vehi-

cles, we model the dynamic vehicle routing problem (DVRP) as a
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Figure 1: An overview of MC-VRP. A decision epoch corresponds with a new trip request 𝑅𝑡 . We generate request-vehicle (RV) and vehicle-
vehicle (VV) graphs by combining a heuristic based PDPTW solver with metrics to quickly estimate the utility of route plans. We then select
promising actions from the graphs by sampling independent sets of high weights to be evaluated by an online approach based on MCTS.

Markov decision process (MDP) based on prior work done by Ulmer

et al. [31]. An MDP is defined by a 4-tuple {𝑆,𝐴, 𝑃,𝛾}, where 𝑆 is a

set of states that capture relevant information for decision-making,

𝐴 is a set of control choices or actions, 𝑃 is a state-action transition

function, and 𝛾 is a reward function that defines the utility of taking

an action at a given state [18]. The route-based MDP formulation

is beneficial in DVRP settings where actions involve assigning the

current request to a vehicle and optimizing the entire route under

consideration. Since our goal is to maximize the number of requests

that can be served in expectation (with respect to the distribution

𝐷), optimizing the route as a whole towards this goal is a natural

choice.

Decision EpochWe define decision epochs as in prior work by

Joe and Lau [15]. A decision epoch occurs at the time a request is

received. Between requests, the environment evolves in continuous

time, e.g., the vehicles move continuously, and requests can arrive

at any point in time. At each decision-epoch, the decision-maker

takes an action (states and actions are defined below). The effect of

the action results in a state transition, which consists of two parts

— a transition from a pre-decision state to a post-decision state, and

from the post-decision state to the next pre-decision state [25, 31].

StateWe denote the set of states by 𝑆 . We use 𝑠𝑡 to denote the pre-

decision state at time 𝑡 , which includes the vehicle locations, current

route plans for all vehicles, and details about passengers aboard the

vehicles. Note that while it suffices to keep track of the route plan

for some formulations, we must track drop-off times for passengers

already on board as actions may dynamically change routes. For-

mally, we represent the state 𝑠𝑡 by the tuple (𝑅𝑡 , 𝑅, 𝑣𝑙𝑜𝑐𝑡 , 𝜃𝑡 ), where
𝑅𝑡 is the new trip request at time epoch 𝑡 , 𝑅 = {𝑅1, . . . , 𝑅 |𝑉 |} is the
set of requests assigned to each of the vehicles, 𝑣𝑙𝑜𝑐𝑡 is a vector of

location of all the vehicles at time 𝑡 , and 𝜃𝑡 = {𝜃1

𝑡 , . . . , 𝜃
|𝑉 |
𝑡 } is the

current route plan for each of the vehicles. The post-decision state

is denoted by 𝑠𝑡𝑥 , which denotes the effect of an action 𝑥 on 𝑠𝑡 , and

includes the updated route plan [31].

We associate some additional information with each route plan.

Consider a route plan 𝜃𝑖𝑡 for vehicle 𝑣
𝑖 ∈ 𝑉 . For each location 𝑙 𝑗 in

the route plan, we associate four pieces of information. First, let

𝑎(𝜃𝑖𝑡 , 𝑙 𝑗 ) denote the planned arrival time of the vehicle 𝑣𝑖 at location

𝑙 𝑗 . We can calculate the arrival time from a pre-computed travel

time matrix (or a router). Second, let 𝑒 (𝜃𝑖𝑡 , 𝑙 𝑗 ) be the earliest time

service may begin at this location. If 𝑙 𝑗 is a pick-up location, 𝑒 (𝜃𝑖𝑡 , 𝑙 𝑗 )
is equal to the earliest pick-up time for the customer; otherwise, we

set it to some default value. Third, 𝑝 (𝜃𝑖𝑡 , 𝑙 𝑗 ) denotes the latest time

at which service is desired at this location. If 𝑙 𝑗 is a dropoff location,

𝑝 (𝜃𝑖𝑡 , 𝑙 𝑗 ) is set to the latest drop-off time for the customer associated

with the location; otherwise, we set it to some default value. We

also maintain the number of passengers on-board the vehicle at

each location as𝑤 (𝜃𝑖𝑡 , 𝑙 𝑗 ). Lastly, let 𝑦 𝑗 be a binary variable set to 0

if 𝑙 𝑗 is a pickup location and set to 1 otherwise.

ActionsWe denote the set of all feasible actions at time 𝑡 by 𝑋𝑡 .

An arbitrary action in𝑋𝑡 involves assigning the new trip request 𝑅𝑡
to a vehicle 𝑣𝑖 ∈ 𝑉 and subsequently updating the route plan of all
the vehicles. Note that in our problem setting, 𝑋𝑡 simply reduces

to Θ𝑡 , the set of all feasible route plans at time 𝑡 . Updating the

route plan can entail changing the order in which existing requests

are picked up/dropped off in a vehicle’s route plan or swapping

requests that have not been picked up between vehicles. While

allowing swapping between vehicles increases the complexity of

the problem significantly, we include such actions nonetheless to

maximize utility. The action space is, therefore, the set of all feasible
route plans. A feasible route must meet three requirements: first,

the pick-up location for each trip requests must appear before the

corresponding drop-off location in the route plan. Second, the pick-

up time for a request must not occur before its earliest pick-up time,

and finally, the drop-off time must not occur after its latest possible

drop-off time.

State Transitions and Rewards At decision-epoch 𝑡 , the

decision-maker can take an action 𝑥 𝑗 ∈ 𝑋𝑡 (say), which results in a

transition from the pre-decision state 𝑠𝑡 to the post-decision state

𝑠𝑥𝑡 . Then, the system transitions from 𝑠𝑥𝑡 to the next pre-decision

state 𝑠𝑡+1, within which a new request might arrive. We assume

that requests are drawn from a distribution 𝐷 . We refrain from

defining the exact state-action transition function since we use a

simulator (or a generative model) for online planning. The reward
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for an action 𝑥 𝑗 ∈ 𝑋𝑡 , denoted by 𝛾 (𝑥 𝑗 ), is simply the number of

additional requests served by the action. Since only one request ar-

rives at any decision epoch, the reward simplifies to 1 if the request

can be accommodated and 0 otherwise. Since paratransit services

require strict adherence to time windows, note that some requests

can be rejected. In practice, human operators can suggest alterna-

tive choices to customers in such situations. We present a notation

lookup table in the technical appendix (section A.6) for convenient

reference to notation.

3 APPROACH
We provide an overview of MC-VRP in Figure 1. Our approach

consists of the following three broad components: 1) For a given
state of the MDP, we sample feasible and promising actions by

exploiting the structure of the problem. To compute feasibility, we

use a heuristic-based solution approach to the PDPTW. To compute

the potential utility of a feasible action, we introduce two heuristics,

one based on passenger travel times and another based on budget
(or slack) in route plans. 2) We compute weighted graphs based

on the feasible actions and their potential utilities. Specifically, we

create vehicle-vehicle (VV) and request-vehicle (RV) graphs (we

describe the graphs below). Then, we generate promising actions by

sampling independent sets from the graphs (based on the weights

of the sets). 3) The sampled actions are then used by our online

non-myopic planner based on Monte Carlo tree search. To build

the search tree into the future, we sample future requests from a

data-driven generative model. Finally, to lower computation time,

we utilize pre-computed samples of requests and root paralleliza-
tion [23] to efficiently explore the search space and recommend

an action for the given state. We describe each component of our

approach in detail below.

3.1 PDPTW Solver
At each decision epoch, our goal is to optimize existing vehicles’

routes to accommodate a new request. First, we check whether a

vehicle can accommodate the request given its current route plan.

Recall that accommodating a request in our setting requires strict

adherence to time windows. We use a heuristic-based solver for the

pickup and delivery problem with time-windows (PDPTW). The

solver enables us to check if the current request can be accommo-

dated in a feasible route plan. The PDPTW is NP-hard [8, 10];

as a result, we use a heuristic subroutine to solve it. Using a

heuristic approach is critical in our setting; as we show below,

the PDPTW solver needs to be invoked for the given state of the

MDP as well as for states we sample as we look into the future.

While any heuristic designed for solving PDPTW can be incorpo-

rated in our framework, we use the insertion heuristic [1], which
seeks to insert the pickup and dropoff locations of the new request

within the existing route plan. We introduce some additional no-

tation to describe the PDPTW solver. Consider a vehicle 𝑣𝑖 ∈ 𝑉
that has an assigned route 𝜃𝑖𝑡 at time 𝑡 . For a new request 𝑅𝑡 , we

use 𝑃𝐷𝑃𝑇𝑊 .𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑙𝑎𝑛𝑠 (𝜃𝑖𝑡 , 𝑅𝑡 ) to denote a module that returns

the set of all feasible route plans for the vehicle 𝑣𝑖 that include

the new request. Also, let 𝑃𝐷𝑃𝑇𝑊 .𝑏𝑒𝑠𝑡𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑙𝑎𝑛(𝜃𝑖𝑡 , 𝑅𝑡 ) =

argmax𝜃𝑈𝜔 (𝑃𝐷𝑃𝑇𝑊 .𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑙𝑎𝑛𝑠 (𝜃𝑖𝑡 , 𝑅𝑡 )), which denotes a

𝑅𝑡

𝑉 1

𝑉 2

𝑉 3

(a)

𝑉 1

𝑉 2

𝑉 3

(b)

Figure 2: (a) RV-graph (𝐺𝑅𝑉 ): there is an edge between a request and
a vehicle for every feasible route plan in which a vehicle can service
the new request. (b) VV-graph (𝐺𝑉𝑉 ): an edge between vehicle 𝑣𝑖

and 𝑣 𝑗 represents the swap with the highest utility between the two
vehicles.

function that computes the utility of each feasible route plan gen-

erated by the PDPTW solver based on a specific utility function

𝑈 and a metric 𝜔 , and returns the one with the highest utility. For

example, a metric could be the total travel time of the route, and the

utility function, in the simplest case, can be the identity function.

3.2 Handling Exponential Action Space
A feasible action in our problem corresponds to a set of route plans

for all vehicles, given that one of them can accommodate the new

request in consideration. In case no feasible action is found, the

request is rejected. Additionally, we design our action space to let

vehicles swap requests from their assigned routes that have not

been picked up (we describe how we use the PDPTW solver to

this end below). As a result, the number of possible actions for

a given state is combinatorially large; on average, an arbitrary

state in our MDP has 10
22

possible actions. Such an action space is

infeasible to explore in an online setting. To address this challenge,

we introduce an approach that enables us to sample promising

actions from the set of feasible actions. We start by introducing two

heuristic metrics that can be used to gauge the long-term utility of

a route plan quickly.

1.) Maximizing the budget to serve future requests: Our goal
is to maximize the number of requests the vehicles serve on a given

day while following the specified time constraints. Intuitively, a

vehicle can accommodate future requests in an existing route plan

if there is sufficient room (time) in the route. To capture this idea

formally, we build upon prior work by Ulmer et al. [33] to extend

the idea of a budget-based heuristic to DVRPs with capacity and

time window constraints. Our budget-based heuristic captures the

idea that maximizing the time a vehicle has no passengers on board

also maximizes the slack to serve future requests. We define the

budget-based utility for a route plan for vehicle 𝑣𝑖 ∈ 𝑉 at time 𝑡 as

𝑏 (𝜃𝑖𝑡 ) = 𝑡𝑚𝑎𝑥 − 𝑡 −
∑

𝑗∈{1,...,|𝜃𝑖𝑡 |−1}

1(𝑤 (𝜃𝑖𝑡 , 𝑙 𝑗 ) > 0)
{
𝑎 (𝜃𝑖𝑡 , 𝑙 𝑗+1) −𝑎 (𝜃𝑖𝑡 , 𝑙 𝑗 )

}
(1)

where 𝑡𝑚𝑎𝑥 denotes the maximum time up to which the vehicle is

available to serve requests (e.g., end of a day), (𝑤 (𝜃𝑖𝑡 , 𝑙 𝑗 )) denotes
the number of passengers on board vehicle 𝑣𝑖 from location 𝑙 𝑗 in its

route plan to the next location, 1() denotes the indicator function,
and 𝑎(𝜃, 𝑙𝑘 ) denotes the time a vehicle operating under a route plan

𝜃 reaches location 𝑙𝑘 . The summation in the equation 1 represents

the total time in the route plan for which at least one passenger is

on-board.
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2.) Minimizing passenger travel time: An alternative to the

budget-based heuristic is to minimize passenger travel time (PTT).

Intuitively, by minimizing passenger travel time, we maximize the

available capacity in each vehicle over the time horizon. We define

the utility of the PTT-based heuristic for a route plan 𝜃𝑖𝑡 as 𝑃𝑇𝑇 (𝜃𝑖𝑡 )
for vehicle 𝑣𝑖 ∈ 𝑉 at time 𝑡 as shown in equation:

𝑃𝑇𝑇 (𝜃𝑖𝑡 ) =
∑

𝑗∈{1,...,|𝜃𝑖𝑡 |−1}

𝑤 (𝜃𝑖𝑡 , 𝑙 𝑗 ) ∗ (𝑎 (𝜃𝑖𝑡 , 𝑙 𝑗+1) − 𝑎 (𝜃𝑖𝑡 , 𝑙 𝑗 )) (2)

In this case 𝑃𝑇𝑇 (𝜃𝑖𝑡 ) is the summation of the number of passen-

gers on board after picking up the passenger at location 𝑗 , repre-

sented by𝑤 (𝜃𝑖𝑡 , 𝑙 𝑗 ), multiplied by the time to reach the next location,

𝑗 + 1. Therefore, by minimizing 𝑃𝑇𝑇 (𝜃𝑖𝑡 ) we maximize the number

of seats available to incorporate future requests.

Having described metrics to assess the potential utility of a

specific vehicle route for a given vehicle, we now introduce an

approach to sample feasible route plans. We begin by describing

two graphs we construct based on the new request that arrives at a

decision epoch and the existing route plans of the vehicles.

RV graph: At each decision epoch, we first generate a graph

that incorporates which vehicles can service the new request. Our

idea is based on prior work by Alonso-Mora et al. [1]. We denote

the RV graph by 𝐺𝑅𝑉 = (𝐿𝑅𝑉 , 𝐸𝑅𝑉 ), where 𝐿𝑅𝑉 denotes a set of

vertices and 𝐸𝑅𝑉 denotes a set of edges. To create the RV graph,

we add a node for each vehicle 𝑣𝑖 ∈ 𝑉 . We add an additional node

to denote the request 𝑅𝑡 . Then, for each feasible vehicle route that

can accommodate the request, we add an edge between the node

denoting the request and each node representing a vehicle. We

denote a specific edge in 𝐸𝑅𝑉 by e𝑅𝑉 (𝑖, 𝑗), which denotes the 𝑗th

feasible route plan for vehicle 𝑣𝑖 that can accommodate the request

under consideration. The feasible route plans are generated by

the module 𝑃𝐷𝑃𝑇𝑊 .𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑙𝑎𝑛𝑠 (𝜃𝑖 , 𝑅𝑡 ) (for vehicle 𝑣𝑖 ∈ 𝑉 and

request 𝑅𝑡 ). We associate two pieces of information with each edge.

First, for an edge e𝑅𝑉 (𝑖, 𝑗), we use𝑈𝜔 (e𝑅𝑉 (𝑖, 𝑗)) to denote the utility
of the edge based on a utility function 𝑈 and metric 𝜔 . Also, we

use 𝜃 (e𝑅𝑉 (𝑖, 𝑗)) to denote the updated route plan corresponding to

the edge e𝑅𝑉 (𝑖, 𝑗). We show an example of an RV graph in figure 2.

VV-graph:While an RV graph is useful to represent which vehi-

cles can accommodate the new request in their existing route plans,

it is possible that vehicles might want to swap requests that have

not been picked up to maximize utility. Note than in a non-myopic

setting, the route plans are optimized at each decision-epoch to

maximize the expected utility with respect to 𝐷 (the request arrival

distribution). However, a specific realization of 𝑅𝑡 presents an op-

portunity for vehicles to re-plan and potentially swap requests. In

order to represent such swapping actions, we create an undirected

vehicle-vehicle (VV) graph at each decision epoch. We denote a VV

graph by 𝐺𝑉𝑉 = (𝐿𝑉𝑉 , 𝐸𝑉𝑉 ).
To construct the graph, we add a node for each vehicle 𝑣𝑖 ∈ 𝑉 .

Edges between two vehicles denote potential swaps of requests

that have not been picked up. An edge e𝑉𝑉 (𝑖, 𝑗, 𝑘) ∈ 𝐸𝑉𝑉 denotes

the potential swap of request 𝑅𝑘 from vehicle 𝑣𝑖 to vehicle 𝑣 𝑗 . Note

that a swap action creates two new route plans, one for each vehi-

cle. We use 𝜃 (e𝑉𝑉 (𝑖, 𝑗, 𝑘), 𝑣𝑖 ) to denote the route plan for vehicle

𝑣𝑖 after the swap (similarly, we use 𝜃 (e𝑉𝑉 (𝑖, 𝑗, 𝑘), 𝑣 𝑗 ) to denote

the route plan for vehicle 𝑣 𝑗 ). The utility of a swapping action,

denoted by 𝑈𝜔 (e𝑉𝑉 (𝑖, 𝑗, 𝑘)) is denoted as the difference in utility

of the updated route plans and the original route plans, i.e., the

plans without the swapping action. As before, 𝑈𝜔 denotes util-

ity computed according to a function 𝑈 and metric 𝜔 . For exam-

ple, using an identity utility function and a metric based on the

budget heuristic introduced in equation 1, 𝑈𝑏𝑢𝑑𝑔𝑒𝑡 (e𝑉𝑉 (𝑖, 𝑗, 𝑘)) =
𝑏 (𝜃 (e𝑉𝑉 (𝑖, 𝑗, 𝑘), 𝑣 𝑗 )) + 𝑏 (𝜃 (e𝑉𝑉 (𝑖, 𝑗, 𝑘), 𝑣𝑖 )) − 𝑏 (𝜃𝑖𝑡 ) − 𝑏 (𝜃

𝑗
𝑡 ). Note

that once a request is swapped, its pickup and dropoff can be in-

serted at multiple places within the existing route of the vehicle that

receives it. For computational tractability, we choose the best inser-

tion point using the module 𝑃𝐷𝑃𝑇𝑊 .𝑏𝑒𝑠𝑡𝐹𝑒𝑎𝑠𝑖𝑏𝑙𝑒𝑃𝑙𝑎𝑛 (introduced

in section 3.1). We show an example of an VV graph in figure 2.

Generating Feasible Actions: A feasible action is an updated

set of route plans for all vehicles that do not violate the time win-

dow or capacity constraints. We seek to sample a feasible route

plan from the constructed graph. Our approach is motivated by

prior work by Zalesak and Samaranayake [36]. Each edge in the RV

graph represents an operation that creates an updated route plan

for a vehicle that includes the new request. Additionally, each edge

in the VV-graph represents a swapping operation which creates a

new route plan for the two vehicles involved in the swap. Therefore,

any selected edge in 𝐺𝑅𝑉 ∪𝐺𝑉𝑉 represents a feasible action. Addi-

tionally, multiple edges can be selected to generate a new action,

if and only if the set of selected edges includes only one of the

edges from the RV graph. The rationale for such a condition is

straightforward; a new request can only be assigned to one vehicle,

and consequently, only one edge from the RV graph can be selected

for a particular feasible action at each decision epoch. To generate

potential feasible actions quickly, we sample independent sets (a set

of edges that have no vertices in common) from 𝐺𝑅𝑉 ∪𝐺𝑉𝑉 that

includes one edge from 𝐺𝑅𝑉 . Such an independent set guarantees

feasibility, as we show below:

Theorem 1. Consider graphs𝐺𝑅𝑉 and𝐺𝑉𝑉 generated at decision
epoch 𝑡 . An independent set of edges from 𝐺𝑅𝑉 ∪𝐺𝑉𝑉 that includes
one and only one edge from 𝐺𝑅𝑉 must be a feasible action for the
current state 𝑠𝑡 of the MDP.

Proof. We first list the conditions for feasibility: 1) An action

is feasible if it services the current request with adherence to time

constraints, and 2) time constraints for existing requests are met

(including potential swaps). An independent set with one edge from

𝐺𝑅𝑉 meets condition 1 by construction—all edges from𝐺𝑅𝑉 service

the current request and meet time constraints (recall that edges are

checked for feasibility through the PDPTW solver). As the vehicle

that services the request cannot swap requests (by the property of

independence), all swaps sampled from 𝐺𝑉𝑉 are also feasible—all

edges in𝐺𝑉𝑉 are checked for feasibility through the PDPTW solver.

Hence the set of independent edges must correspond to a feasible

action for the given state. □

We point out that the vehicle that services the request can en-

gage in swapping and still maintain feasibility; however, ensuring

that such a vehicle does not participate in swapping guarantees
feasibility. As a result, we use the heuristic of sampling independent

sets (with one edge from the RV graph) that guarantee feasibility

by construction. We present a more detailed description of why

independent sets ensure feasibility in the technical appendix (sec-

tion A.1.
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Algorithm 1 Generating feasible actions

Require: 𝜃𝑡 , 𝑅𝑡 , 𝐾𝑚𝑎𝑥 , 𝑀,𝐺𝑉𝑉 ,𝐺𝑅𝑉

1: Θ𝑡 ← {} ⊲ empty set of feasible actions

2: U← {} ⊲ empty set of utilities for each action

3: for e𝑅𝑉 (𝑖, 𝑗) ∈ 𝐸𝑅𝑉 do
4: 𝜃 ← 𝜃𝑡

5: 𝜃 [𝑖 ] = 𝜃 (e𝑅𝑉 (𝑖, 𝑗))
6: Θ𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝜃 )
7: 𝑈𝑥 ← 𝑈𝜔 (e𝑅𝑉 (𝑖, 𝑗))
8: U.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑈𝑥 )
9: 𝐺′

𝑉𝑉
= 𝐺𝑉𝑉 [ {𝑣𝑘 ∈ 𝐿𝑉𝑉 : 𝑘 ≠ 𝑖 }]

10: while |𝐸′
𝑉𝑉
| > 0 do

11: e𝑉𝑉 (𝑚,𝑛,𝑘) = arg max(𝑚,𝑛,𝑘 ) (𝑈𝜔 (e𝑉𝑉 (𝑚,𝑛,𝑘))
12: 𝜃 [𝑚] = 𝜃 (e𝑉𝑉 (𝑚,𝑛,𝑘), 𝑣𝑚)
13: 𝜃 [𝑛] = 𝜃 (e𝑉𝑉 (𝑚,𝑛,𝑘), 𝑣𝑛)
14: Θ𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝜃 )
15: 𝑈𝑥 = 𝑈𝑥 +𝑈𝜔 (e𝑉𝑉 (𝑚,𝑛,𝑘))
16: U.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑈𝑥 )
17: 𝐺′

𝑉𝑉
= 𝐺′

𝑉𝑉
[ {𝑣𝑘 ∈ 𝐿𝑉𝑉 : 𝑘 ≠𝑚 & 𝑘 ≠ 𝑛}]

18: end while
19: end for
20: // Filter: 𝑋𝑡 is the 𝐾𝑚𝑎𝑥 actions with highest utility

21: 𝑋𝑡 = Θ𝑡 [𝑎𝑟𝑔𝑆𝑜𝑟𝑡 (𝑈 ) [1 : 𝐾𝑚𝑎𝑥 ] ]
22: Return: 𝑋𝑡

Recall that our goal is to sample promising actions from the

set of feasible actions since evaluating all feasible actions in an

online setting is not tractable. We present our approach to select-

ing promising actions in algorithm 1. Our approach is based on

sampling independent sets based on the cumulative sum of edge

weights of the sets. First, we initialize an empty set of feasible ac-

tions Θ𝑡 and an empty set of utilities U. Then, we begin selecting

an independent set by selecting an edge from 𝐺𝑅𝑉 (step 3). Next,

we initialize the utility for the route plan (that the independent set

corresponds to) with the utility of the chosen edge (step 7). Then,

we drop the corresponding vehicle node from 𝐺𝑉𝑉 and consider

swaps iteratively (step 9-10). The utility of the resulting action is

calculated by adding the utility of serving the request and the swap-

ping action (step 15). Finally, we return a subset of 𝐾𝑚𝑎𝑥 actions

with the highest total utility (step 21-22) to be evaluated by the tree

search, where 𝐾𝑚𝑎𝑥 is an exogenous parameter.

3.3 MCTS Evaluation
Non-myopic approaches to DVRP rely on hybrid offline-online

solutions in which an offline component is trained on historical

data and embedded in an online search [15, 32]. Offline components

typically require long training periods and must be re-trained each

time the environment changes, making them unsuitable for highly

dynamic environments. This motivates us to use MCTS, an online

probabilistic search algorithm, to evaluate the long-term utility of

potential actions. MCTS is an anytime algorithm, and any changing

environmental conditions that are detected can immediately be

incorporated into its underlying generative models for making

decisions.

MCTS represents the planning problem as a “game tree,” where

states are represented by nodes in the tree. The current state is

treated as the root node, and actions represent edges that mark

transitions from one state to another. The fundamental idea behind

Algorithm 2 MCTS evaluation

Require: 𝑋𝑡 , 𝑆𝑡 , 𝐸, 𝑛𝑐ℎ𝑎𝑖𝑛𝑠
1: 𝑒𝑣𝑒𝑛𝑡𝐶ℎ𝑎𝑖𝑛𝑠 = 𝐸.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑆𝑡 , 𝑛𝑐ℎ𝑎𝑖𝑛𝑠 ) ⊲ sample chains

2: 𝐴 = 𝑀𝐶𝑇𝑆 (𝑋𝑡 , 𝑒𝑣𝑒𝑛𝑡𝐶ℎ𝑎𝑖𝑛𝑠) ⊲ action scores

3: 𝐴 = {}
4: for 𝑎 ∈ 𝐴 do parallel
5: 𝐴.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑚𝑒𝑎𝑛 (𝑎)) ⊲ aggregate across chains

6: end for
7: // Return action with highest action score

8: Return: 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖 ∈𝑋 (𝐴 [𝑖 ])

MCTS is that the search tree can be explored asymmetrically, bias-

ing the search toward actions that appear promising. To estimate

the value of an action, MCTS simulates a “rollout” to the end of

the planning horizon using a default policy. In practice, the rollout

policy only needs to be computationally cheap; a common method

involves selecting actions randomly during rollout. As the tree is

explored and nodes are revisited, each node’s utility is estimated.

As the search progresses, the estimates converge towards the true

value of the node. This asymmetric tree exploration allows MCTS

to search very large action spaces quickly. MCTS typically requires

a few domain specific components: a generative model of the envi-

ronment, the tree policy used to navigate the search tree, and the

default policy used to estimate the value of a node. We describe

each component below.

The role of the generative demand model (denoted by 𝐸) pro-

vides a method for sampling new requests as the tree is built into

the future. We use a hierarchical modeling approach to sample

trip requests based on historical data. We optimize model param-

eters based on maximum likelihood estimation. For the sake of

brevity, we present a detailed description of the generative model

in the appendix (section A.2). We use the standard Upper Confi-

dence bound for Trees (UCT) [19] to navigate the search tree and

decide which nodes to expand. When expanding a node, we use

algorithm 1 to sample feasible actions for the given state. When

working outside the MCTS tree to estimate the value of an action

during rollout, we rely on a default policy. This is a lightweight

policy which is simulated up to a time horizon and the utility of the

simulation is propagated up the tree. Our default policy is a greedy

assignment—for a given state, we choose the edge with the highest

myopic utility from the RV-graph. To ensure tractability, we do not

incorporate swapping requests between vehicles into our rollout

policy; this saves time during MCTS evaluation as the VV graph is

not generated during rollout.

Root parallelization: Given that the sampled paratransit re-

quests can be both sparse and highly uncertain in time and space,

sampling one chain of requests might not adequately represent

future demand. To handle this uncertainty, we use root paralleliza-
tion, which involves sampling many chains, and instantiating a

separate MCTS tree for each with the current request as the root

node. Crucially, each tree is explored in parallel. After execution,

the score for each of the actions from the common root node is

averaged across trees. Then, the action with the highest average

score across the trees is returned as the selected action.

The process for evaluating and selecting an action is provided in

algorithm 2. The algorithm takes 𝑋𝑡 from the feasible actions com-

ponent aswell as the current state 𝑆𝑡 , the generativemodel 𝐸 and the
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number of chains to sample 𝑛𝑐ℎ𝑎𝑖𝑛𝑠 . First, the set of 𝑒𝑣𝑒𝑛𝑡𝐶ℎ𝑎𝑖𝑛𝑠 is

sampled from the generative model (line 1). Second, a tree is instan-

tiated and MCTS is performed in parallel on each of the trees. This

processed is represented by 𝐴 = 𝑀𝐶𝑇𝑆 (𝑋𝑡 , 𝑒𝑣𝑒𝑛𝑡𝐶ℎ𝑎𝑖𝑛𝑠), where 𝐴
is a two dimensional tensor of size |𝑋𝑡 | × 𝑛𝑐ℎ𝑎𝑖𝑛𝑠 (line 2). In this

sense, each row in 𝐴 represents a feasible action and the columns

represent the chains. The mean of each row in 𝐴 represents the

action score and is stored in 𝐴 (line 5). Finally, the action with the

maximum action score in 𝐴 is returned (line 8).

4 EXPERIMENTS AND RESULTS
4.1 Experimental Setup and Data Description
Paratransit dataset: We acquired six months of paratransit trip

requests between January 1, 2021 and July 1, 2021 from CARTA.

Our dataset consists of a total of 25,843 trip requests. Each request

in our dataset consists of a geo-coordinate (longitude, latitude) for

the pickup location and dropoff location, and also the requested

pickup time.

Road network and travel time matrix: We use Open-

StreetMap (OSM) [22] for the road network for the area under

consideration and OSMNX [4] to generate a routing graph of the

road network with travel time for edge weights. We describe our

approach for generating the travel time matrix in the technical

appendix (section A.3).

Data pre-processing: We processed the paratransit data and

mapped each request to the road network graph. We describe pre-

processing steps in the technical appendix (section A.3). The pro-

cessed data spanned 129 days. We randomly selected 15 days from

the dataset for the evaluation (test) set. The data from the rest of

the days was used for training the generative model and hyperpa-

rameter tuning.

System parameters: Our experimental parameters are as fol-

lows: we vary the number of vehicles from 3 to 5 as we find that

5 vehicles can serve 100% of the trip requests in our setting using

MC-VRP. The vehicle capacity is set to 8, which is in accordance

with the capacity of typical paratransit vans. The request arrival

time, defined as the time before the requested pickup time that the

request is available to the system, is set to 60 minutes. In practice,

such requests can also be made before 60 minutes. The time win-

dow, i.e., the amount of time before the requested pickup time that

a request can be picked up is set to 15 minutes (in accordance with

settings used by CARTA). Additionally, when a customer requests

a trip we provide an estimated dropoff time which is the sum of the

requested pickup time and the minimum travel time to the dropoff

location. The late time window is 15 minutes after the estimated

dropoff time which is again, in accordance with settings used by

our partner agency. Additionally, we reiterate that as the time win-

dows are hard constraints, a trip is only feasible if the passenger is

picked up and dropped off between the early pickup window and

late dropoff window.

Since our online approach is anytime, we vary the amount of time

that is allocated to the algorithm for making a decision (referred to

as runtime cutoff). Practitioners can vary this parameter to account

for the maximum time they can afford to assign a request to a

vehicle. Note that the passenger making the request need not wait

for this duration to receive a feedback; whether a request can be

serviced or not can be computed in less than a second using our

approach (we only need to construct the RV graph to find at least

one feasible action). We consider two variants of our proposed MC-

VRP approach. MC-VRP (budget) uses our budget-based utility

for scoring feasible actions in algorithm 1, whileMC-VRP (PTT)
uses the PTT-based utility for scoring feasible actions. The MCTS

evaluation as outlined in section 3.3 remains the same for both

variants.

4.2 Baselines
We evaluate the performance of MC-VRP against the following

baselines. For all baselines, we use the same number of vehicles

(we present results by varying the number of vehicles) and vehicle

capacity as MC-VRP. We compare our approach to two myopic

online approaches (greedy and MA-RTV) and one non-myopic

hybrid approach (DRLSA).

• Greedy assignment (greedy-PTT, greedy-budget): Greedy
assignment consists of first generating feasible actions according

to algorithm 1 and then selecting the action with the highest

utility. For comparison, we include greedy assignment using

both the PTT and budget utilities. We refer to greedy assignment

with the PTT utility as greedy-PTT and greedy assignment with

the budget utility as greedy-budget.

• Deep reinforcement learning-based vehicle routing [15]
(DRLSA): Joe and Lau combine deep reinforcement learning,

which approximates a state-value function for routing, with a

simulated-annealing based routing heuristic to solve the dynamic

vehicle routing problem [35]. The state representation of DRLSA

is based on the total cost of the planned routes of the vehicles.

While the original approach is designed for cargo-delivery prob-

lems, we add pickup and dropoff constraints given our problem

setting. Also, the problem formulation by Joe and Lau [15] seeks

to minimize the sum of the travel and waiting times of all vehicles.

It serves all requests and incurs a penalty cost for time-window

violations. To apply DRLSA to our problem formulation, where

time-windows constraints are strict, we take the route plans out-

put by DRLSA and iteratively remove requests that violate time

windows until a maximal feasible set of requests is left. Further,

for a fair comparison, we run the DRLSA algorithm itself with

shorter time windows but remove requests that violate the origi-

nal time windows, which we found significantly improves the

service rate of DRLSA in our setting. Finally, we point out that

since there was no open-source implementation available for this

approach, we implemented DRLSA for this paper.

• Myopic and Anytime trip-vehicle assignment-based on
RTV graphs [1] (MA-RTV): We also compare our approach

with an anytime algorithm that batches requests together and

then maximizes the myopic utility for the specific batch of re-

quests. For each batch, the algorithm creates an RTV graph by

checking shareability between requests as well as requests and

vehicles. Since the best passengers-vehicle pair is found in each

batch, the approach works well in practice despite being my-

opic (our experiments confirm this). We refer to this baseline

as MA-RTV. To adapt MA-RTV for our problem setting, we set

the parameters as follows. First, as MA-RTV is not able to han-

dle requests in advance, we set the request arrival time to the
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Figure 3: Service rate, defined as percentage of trips served, per day on 15 day test set for 3, 4 and 5 vehicles. 5 vehicles was enough to service
all request on most days for MC-VRP (budget), MC-VRP (PTT) and MA-RTV. MC-VRP (budget) had the highest median service rate for 3 and
4 vehicles. The budget-based heuristic improves service rate for MC-VRP by 2.2% and 2.1% and greedy assignment by 3.4% and 4.9% for 3 and
4 vehicles respectively.

early time window. Second, we set the latest dropoff time to 30

minutes (15 minutes for early time window and 15 minutes for

late time window) plus the shortest path between the pickup and

dropoff locations. Therefore, the time window requirements are

equivalent to our problem setup. Lastly, MA-RTV is a batching

approach which waits for a set period of time before grouping

requests together for assignment. In the paratransit setting, re-

quests rarely arrive very close together and are expected to be

handled one at a time, typically over the phone. Therefore we

set the batch interval to 20 seconds, which closely mimics the

observed paratransit data.

Parameter Tuning: For all baselines, we used 3 days of para-

transit data for hyperparameter tuning. We present details about

hyperparameter search in the technical appendix (section A.4).

Reproducibility: Our source code, implementation of the

baseline approaches, and samples of our datasets are available

online (https://github.com/smarttransit-ai/iccps-2022-paratransit-

public). We implemented MC-VRP in the Julia programming lan-

guage using the pomdps.jl framework [9]. Results presented in this

paper were obtained using the Chameleon testbed supported by

the National Science Foundation [16].

4.3 Results
Service Rates:Our primary objective is to maximize the number of

requests serviced each day. The service rate per day for the 15 days

in the evaluation (test) set is provided in figure 3 with fleet sizes

of 3, 4, and 5 vehicles. We first present results in a setting where

MC-VRP (budget) and MC-VRP (PTT) are allowed to run for 1000

iterations without early termination. First, we note that 5 vehicles

is enough to service all of the requests on most days as MC-VRP

(budget), MC-VRP (PTT), and MA-RTV all have a median service

rate of 100%. We observe that MC-VRP (budget) outperforms all

baselines for fleet sizes of 3 and 4 with with a median service rate

of 87.0% and 97.6% respectively. MC-VRP (PTT) had a service rate

of 84.7% and MA-RTV had a service rate of 81.7% for 3 vehicles.

MA-RTV outperformed MC-VRP (PTT) in the case of 4 vehicles

with a median service rate of 96.2% compared to 95.8%.

We also observe that the budget-based heuristic works better

than the travel time-based heuristic for both Monte Carlo tree

search as well as greedy assignment. Indeed, MC-VRP (budget)

results in a higher service rate than MC-VRP (PTT) and greedy-

budget outperforms greedy-PTT for all fleet sizes. This indicates

that the budget utility, which aims to maximize time for which a

vehicle has no passengers on-board, can be used to quickly compute

promising actions to explore. It is important to note that while we

focus on paratransit services, the budget-based heuristic can be

applied for other DVRPswith capacity and timewindow constraints.

We also observe that DRLSA had the lowest service rate across all

fleet sizes. An influencing factor, as discussed in section 4.2, is

that time windows are soft constraints in DRSLA which is not

particularly suited to paratransit settings.

Computation Time: The computation time per request for MC-

VRP and the baselines is shown in figure 4. MC-VRP (budget) takes

slightly longer than MC-VRP (PTT) to compute a decision, with a

median computation time of 38 seconds, 49 seconds, and 40 seconds

as compared to 36 seconds, 44 seconds, and 37 seconds for 3, 4,

and 5 vehicles respectively. DRLSA, MA-RTV, and greedy all had

median computation times less than 3 seconds. In this context, the

fact that MC-VRP is both non-myopic and fully online is reflected

in the higher runtimes; while the observed runtimes are acceptable

in our setting, i.e., paratransit services, the application of online

and non-myopic methods remains an open question in general

VRP settings. Note that if the MCTS evaluation of our approach is

not used (i.e., the early stopping time approaches 0), our approach

simplifies to the greedy baseline, which takes less than a second on

average. This observation means that the majority of computation

time in our approach is spent on MCTS.

As discussed in section 4.1, the MCTS evaluation can be run

in the background between calls. Therefore, a potentially limiting

factor for our approach is the rate at which requests arrive; even

when running in background between requests, MC-VRP must

be stopped on the arrival of a new request. Since MC-VRP is an

anytime algorithm, it is possible to set a maximum computation

time per request. In such a setting, the algorithm is stopped early

(in our case, before the default number of iterations is reached), but
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Figure 4: Computation time per request in seconds for each day in
the test set for 3, 4 and 5 vehicles. Median computation time per re-
quest for MC-VRP (budget) is 38 seconds, 49 seconds and 40 seconds
for 3, 4 and 5 vehicles respectively. DRLSA, MA-RTV and greedy all
had median computation times less than 3 seconds per request.
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Figure 5: Runtime analysis: Percent change in service rate for MC-
VRP (budget) with a cutoff of 30 seconds per request compared to
no cutoff. For three vehicles there was a median of 1.2 percent de-
crease in service rate on test set while the computation cutoff had
negligible affect for four and five vehicles.

outputs a feasible solution. In our dataset, 99% of requests arrive

more than 30 seconds after the previous request and the median

time between requests was approximately 5 minutes. Therefore,

we evaluate the performance of MC-VRP with a 30 second cut-off

time in figure 5. We observe only a negligible decrease in service

rates; the median service rate decreases by 1.2% for 3 vehicles and

0% for 4 and 5 vehicles.

Robustness: To evaluate the robustness of the proposed ap-

proach with respect to changing environmental conditions, we

change the travel time distribution in the city. For experiments, we

assume the existence of a service that uses short term observations

about an environmental variable (e.g., travel times) and provides

an updated model. In practice, transit agencies can use services like

Google maps for this purpose. In this case, when a user requests a

ride, we can use the updated travel time matrix to give an accurate

estimate of the dropoff time. We assume that all approaches have

access to the updated travel time matrix at inference time, i.e. when

a user requests a ride. However, approaches that rely on models

trained offline do not have the ability to update their model. We gen-

erate a modified travel time matrix that resembles a congested road

network. The distribution of the free-flow travel time matrix and

the congested travel time matrix is shown in Figure 8. On average,

the congested travel time matrix had speeds that were 30% slower
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Figure 6: Robustness to roadway congestion: Percent change in ser-
vice rate for DRLSA, MA-RTV, greedy-budget and MC-VRP (budget)
on test set using congested travel timematrix compared to free-flow
speedmatrix. MC-VRP (budget) had less of a decrease in service rate
for 3, 4 and 5 vehicle fleets compared to the baselines.

than the free-flow speed. We describe the process to generate the

updated matrix in the technical appendix (section A.5).

We evaluated DRLSA, MA-RTV, greedy-budget and MC-VRP

(budget) on the 15 day evaluation set using the congested travel time

network and compared the resulting service rates to those generated

without congestion. We observe that MC-VRP (budget) incurs less

of a decrease in service rate compared to DRLSA, MA-RTV and

greedy-budget across all sizes of vehicle fleets as shown in figure 6.

As expected, DRLSA had the greatest decreases in service rate due

to its reliance on a value function that was trained offline using

the free-flow travel time matrix. While hybrid approaches such as

DRLSA have access to the real-time travel conditions, it is difficult

to re-train offline components, resulting in a higher degradation in

performance. Both MA-RTV and greedy-budget outperform DRLSA

when evaluated for robustness. This result is expected since MA-

RTV and greedy-budget are both online approaches, it is able to

adapt to the updated matrix. We also observe that MC-VRP (budget)

performs better MA-RTV and greedy-budget, showing that our

non-myopic online solution improved upon the myopic online

approaches as well.

5 RELATEDWORK
Vehicle Routing Problems (VRPs) can be broadly classified as ei-

ther static or dynamic [26]. In static VRPs, all inputs are received

before optimizing routes, whereas in dynamic VRPs inputs are up-

dated concurrently with the determination of the route. The focus

of this paper is on dynamic VRPs (DVRP), which can be either

dynamic-deterministic, in which no stochastic information about

future inputs is known, or dynamic-stochastic, in which some prob-

abilistic information is known about the inputs that dynamically

evolve [24]. These stochastic inputs can include models over travel

times, demands, and customer information [27]. DVRPs can be

solved to maximize myopic rewards [1] or a non-myopic utility

function [15, 29]. Exact methods for solving DVRPs seek to find

an optimal solution, but are often constrained to small problem

instances due to computational complexity, e.g., such approaches

include column-generation [5] and the set-partitioning method [6].

Metaheuristic approaches have also been applied to DVRPs, includ-

ing particle swarm optimization [17], genetic algorithms [30], and

tabu search [2, 11]. Decision theoretic approaches have also been
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applied to DVRPs. DVRP is a sequential decision-making problem,

and can be modeled as a Markov Decision Process (MDP). One

approach is to use a conventional MDP structure, where actions

consist of determining the next customer to serve at each decision

epoch. Another approach, proposed by Ulmer et al. [31], is based on

using a route-based MDP where the state-action space includes not

only assigning an incoming request to a vehicle, but also optimizing

the vehicles’ routes.

There are three ways to solve the DVRP MDPs: offline, online,

and hybrid solution methods. Offline methods pre-compute a policy

that is queried while executing a plan [21, 29, 34]. Offline policies

can be slow to learn, but can make decisions very quickly at ex-

ecution time, and are therefore useful when there are strict time

constraints on decision-making. Online solution methods perform

computations during plan execution. These are generally sampling

approaches, and only focus on the states of the system relevant to

the current decision being made. Online methods include rollout al-

gorithms [12, 28] and multiple scenario approach (MSA) [3]. Online

approaches have typically been applied to problem settings without

strict time constraints on decision-making (the time it takes to com-

pute a decision), and in dynamic environments where policies gen-

erated offline can become stale. Hybrid solution methods attempt

to combine offline and online approaches to leverage the strengths

of both. For example, Ulmer et al. [32] propose an approach that

embeds a value function learned using ADP into an online roll-

out algorithm. Joe and Lau [15] propose a similar approach, which

combines Deep Reinforcement Learning to approximate a value

function offline with an online simulated annealing approach.

6 CONCLUSION
We design a non-myopic online approach for DVRP for paratransit

services that is robust to environmental changes by construction

and scalable to real-world applications. To tackle the intractable

action space, we leverage the structure of the problem to design

heuristics that can sample promising actions for evaluation through

MCTS. Our experimental results demonstrate superior performance

and increases robustness against state-of-the-art baselines.
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A TECHNICAL APPENDIX
A.1 Independent Sets and Feasible Actions
Recall theorem 1, which states that an independent set of edges from

𝐺𝑅𝑉 ∪𝐺𝑉𝑉 that includes one and only one edge from 𝐺𝑅𝑉 must

be a feasible action for the current state 𝑠𝑡 of the MDP. Notice that

the only condition in which a chosen set of edges from𝐺𝑅𝑉 ∪𝐺𝑉𝑉
might result in an infeasible action is the following: consider a

situation in which the vehicle (say 𝑣𝑖 ) that is assigned the request

(denoted by an edge from the RV graph) also engages in swapping

and receives an additional request from a different vehicle (say

𝑣 𝑗 ). While both the actions, namely the swapping action and the

servicing of the new request, are checked for feasibility in isolation,

vehicle 𝑣𝑖 might violate time constraints if it seeks to service both.

In theory, it is possible to enumerate over each possible set of edges

in𝐺𝑅𝑉 ∪𝐺𝑉𝑉 and check for feasibility; however, enumerating over

all such sets is intractable in practice.

A.2 Generative Model
We model two processes as part of the generative demand model.

First, we model the distribution of the number of requests per day

as a Gaussian distribution. We learn the parameters of the distri-

bution by maximizing the likelihood of historical paratransit data.

Second, to model individual trip requests, we aggregate historical

trip requests and weigh each trip request by the number of times it

is observed (often, some passengers in paratransit services request

trips that have the same source, destination, and time every week).

To sample a sequence of trip requests for a day, we perform the

following steps: 1) we sample the number of requests (say𝑚) from

the learned Gaussian distribution over trip requests. 2) We sample

𝑚 requests from the weighted aggregation of trip requests.This

process is repeated a number of times to generate multiple sampled

chains offline. During inference at decision epoch 𝑡 , we provide a

method 𝐸.𝑠𝑎𝑚𝑝𝑙𝑒 (𝑡, 𝑛) which samples 𝑛 chains uniformly at ran-

dom from 𝐸 and returns the requests in each chain that occur after

the current time 𝑡 .

A.3 Paratransit Data Pre-Processing
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Figure 7: The temporal distribution of requests and the requested
travel duration for the requests from one day.

Paratransit Data: Our dataset consists of a total of 25843 trip
requests. As an example, we show the temporal distribution of

one of the days and the requested travel duration for each request

in figure 7. For pre-processing, each pickup and dropoff location

was assigned to the nearest node in the road network graph. We

used the haversine distance to calculate the distance between two

geo-coordinates. We filtered out any requests that had a pickup or

dropoff location that was farther than 200 meters from the nearest

node in the road network; this process filtered out approximately

5% of the requests. Of the 25843 trips in the original dataset, 24543

remained after the distance filter. As paratransit services are sig-

nificantly more sparse on weekends, we included only weekday

trips for our analysis that spanned 129 days (94% of the trips in

our data occur on weekdays).We randomly selected 15 days from

the dataset for the evaluation (test) set. The remaining 114 days

were use to compute 100 synthetic days worth of trip requests (i.e.,

chains) for the generative model using the procedure outlined in

section 3.3. Three more chains were generated as a calibration set

for parameter tuning.

Road Network and Travel Time Matrix: We use Open-

StreetMap (OSM) [22] for the road network for the area under

consideration and OSMNX [4] to generate a routing graph of the

road network with travel time for edge weights. Unless otherwise

noted, the experiments used the free flow speed as edge weight.

Then, we calculated the shortest paths between all pairs of net-

work to generate a matrix of travel times. The travel time matrix is

generated offline and therefore, provides constant lookup time for

querying travel times between arbitrary locations in the area under

consideration. Additionally, we collected historical traffic data from

INRIX [14] to estimate typical travel times during times of high

congestion. We use congestion data for evaluating the robustness

of the proposed approach.

A.4 Parameter Tuning

Table 1: Parameter settings

Parameter Values
Number of vehicles (𝑀) 3, 4, 5

Vehicle capacity 8

Request arrival time 60m

Time window 15m

Runtime cutoff Inf, 30s

𝐾𝑚𝑎𝑥 10

MCTS depth 20

MCTS iterations 1000

𝑛𝑐ℎ𝑎𝑖𝑛𝑠 25

MC-VRP has two parameters for tuning—the depth of the search

tree and the number of feasible actions. MCTS tree depth, which

is the number of future requests to consider from the generative

model, was varied between {10, 20, 30}. The number of feasible

actions to explore, denoted by 𝐾𝑚𝑎𝑥 , effectively sets the maximum

branching factor for MCTS. We varied this parameter between

{10, 15, 20, 25, 30}. We performed a grid search using the calibration

set and found the best parameters in terms of service rate (MCTS

depth of 20 and 𝐾𝑚𝑎𝑥 = 10).

The calibration set was also used to select the parameters for

DRLSA. The neural network of the DRLSA baseline approach con-

sists of 1 hidden layer with 64 neurons. The activation function of

the hidden layer is rectified linear (ReLu) and linear for the output

layer. We trained the network with a batch size of 32, the discount

factor for future reward is 0.99, and the learning rate is 0.01. We

found the best result with 𝐾𝑚𝑎𝑥 = 500 for Simulated Annealing.

Similar to MC-VRP, we used grid search to find the best parameters

for DRSLA.

11



A.5 Congested Travel Time Matrix

Figure 8: (a) Free-flow speed vs (b) Irregular travel times in seconds.
Irregular travel times represent a congested roadway network. Each
cell shows the travel time from a location x to another location y.
There are total 10788x10788 combinations in the travel timematrix.

To evaluate the robustness of our approach to changes in traffic

conditions we generated a second travel time matrix representing

a congested road network. The original travel time matrix was

calculated by finding shortest paths between all nodes in an OSM

graph where the edge weights were travel time between the nodes

using free flow speed. Each edge in the OSM graph had a unique

OSM ID which mapped to roadway speeds in the INRIX dataset.

The INRIX dataset included average roadway speeds per hour for

each day in the week. For each OSM ID we took the speed at

the 5th percentile and updated the edge weights accordingly. The

distribution of the free-flow travel time matrix and the congested

travel time matrix is shown in Figure 8. On average, the congested

travel time matrix had speeds that were 30% slower than the free-

flow speed.

A.6 Notation Lookup

Table 2: Symbols

Notation Description
𝑉 A set of vehicles each of capacity 𝑐

𝜃𝑡
The set of route plans for all the vehicles with 𝜃𝑖𝑡
denoting the plan vehicle 𝑣𝑖 ∈ 𝑉

Θ𝑡 The set of all possible route plans at time 𝑡

𝑣𝑙𝑜𝑐𝑡
A set consisting of locations of all vehicles at time 𝑡

with 𝑣𝑙𝑜𝑐𝑖𝑡 denoting the location of 𝑣𝑖 ∈ 𝑉
𝑅𝑡 A new trip request at time 𝑡

R Ordered set of trip requests for a day

[𝑒𝑡 , 𝑝𝑡 ] Service time window for request 𝑅𝑡
𝐶 (𝜃𝑚

𝑖
) Cost of vehicle𝑚 servicing at route plan

𝑀 Set of vehicles in the paratransit fleet

𝑆𝑖
State tuple < 𝑇𝑖 , 𝑣𝑙𝑜𝑐𝑖 , 𝜃𝑖 > for

timestep 𝑖

𝐸 Generative demand model

𝐾𝑚𝑎𝑥
Maximum number of feasible actions

to consider at each time epoch
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