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ABSTRACT
Public transportation systems often suffer from unexpected fluctu-
ations in demand and disruptions, such as mechanical failures and
medical emergencies. These fluctuations and disruptions lead to
delays and overcrowding, which are detrimental to the passengers’
experience and to the overall performance of the transit service.
To proactively mitigate such events, many transit agencies station
substitute (reserve) vehicles throughout their service areas, which
they can dispatch to augment or replace vehicles on routes that
suffer overcrowding or disruption. However, determining the op-
timal locations where substitute vehicles should be stationed is a
challenging problem due to the inherent randomness of disruptions
and due to the combinatorial nature of selecting locations across
a city. In collaboration with the transit agency of a mid-size U.S.
city, we address this problem by introducing data-driven statisti-
cal and machine-learning models for forecasting disruptions and
an effective randomized local-search algorithm for selecting loca-
tions where substitute vehicles are to be stationed. Our research
demonstrates promising results in proactive disruption manage-
ment, offering a practical and easily implementable solution for
transit agencies to enhance the reliability of their services. Our
results resonate beyond mere operational efficiency—by advanc-
ing proactive strategies, our approach fosters more resilient and
accessible public transportation, contributing to equitable urban
mobility and ultimately benefiting the communities that rely on
public transportation the most.
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1 INTRODUCTION
Modern urban ecosystems are dependent on public transit, which
gives millions of people access to mobility, influences settlements,
and encourages sustainable growth. Despite their necessity, public
transportation systems frequently struggle to strike a balance be-
tween available infrastructure and constantly shifting demand [1].
This presents a particular challenge for mid-size U.S. cities, which
typically have sparse transit networks, and where there is signifi-
cant inequity in how communities rely on transit networks. Even
though it is inevitable, crowding during rush hour results in longer
commute times, which is detrimental to the passengers’ experi-
ence. In contrast, services tend to remain underused at non-peak
times, which results in operational inefficiencies, especially in less
populated suburban areas [18, Chapter 8.4]. Unexpected transit dis-
ruptions caused by a variety of reasons, such as vehicle breakdowns,
operational issues, or medical emergencies, compound these diffi-
culties (Figure 1). These disruptions cause cascade effects across
the entire transit network by extending travel times and disturbing
established traffic patterns [20]. Both riders and operators are heav-
ily impacted by these disruptions, highlighting the urgent need for
proactive mitigation methods.

The problem setting that we consider has two distinct challenges:
first, we seek to forecast disruptions in space and time, which we
refer to as the forecasting problem, and second, we seek to optimize
the stationing of substitute buses to ensure that they can promptly
respond to disruptions, which we refer to as the stationing problem.

Figure 1: Disruptions, such as traffic accidents, hamper the re-
liability of the service provided by our partner transit agency.
This image shows an actual disruption from 2020.



However, forecasting disruptions is challenging due to the scarcity
of data. The relative rarity of disruptions means there is a limited
amount of data to draw conclusions from using conventional ma-
chine learning models [29]. While prior work has explored the
impact of disruptions on public transportation [9, 24, 27], there is
significantly less work on attempting to predict disruptions [28].
While Yap and Cats [28] recently explored disruptions in public
transit, our setting is significantly more challenging from the per-
spective of data availability—Yap and Cats [28] focus on disruptions
in metro (subway) networks, which have more than 100 types of
disruptions, as opposed to only a handful in the case of bus net-
works (our partner agency has 20 types of disruptions), and the
frequency of disruptions in metro networks is almost thrice as high
as in our problem setting.

As for the challenge of bus stationing, based on conversations
with our partner transit agency, we learned that there are no formal
policies for where buses are to be stationed at the start of each
day. Agencies rely on a combination of historical ridership data
and domain expertise to identify potential pain points across the
city. Currently, our partner agency stations its buses at locations
mainly near the central terminal and at high-frequency lines which
experience consistent overcrowding. The stationing problem is
challenging due to the combinatorial nature of the search space
(i.e., substitute vehicles can be stationed at arbitrary stops) and
the inherent uncertainty of the disruptions. The problem therefore
must maximize expected utility1 while considering a multitude of
factors such as passenger demand, geographic locations, traffic pat-
terns, and operational constraints [17]. As the combinatorial search
space grows exponentially with the growth of urban areas, transit
agencies need scalable approaches to dynamically station vehicles.
Most prior work has looked at this problem from a purely demand-
responsive setting [31] (where passengers reserve rides in buses,
similar to taxis), which is fundamentally different from stationing
buses for mitigating the effects of unexpected disruptions.

In this paper, we tackle the twin challenges of forecasting dis-
ruptions and stationing substitute vehicles in collaboration with
the transit agency of a mid-size U.S. city. Specifically, we seek to
estimate the likelihood of disruptions in fixed-line bus transit, and
given the likelihood, optimize the stationing of substitute buses
to mitigate the effects of disruptions. By using our approach, the
transit agency will identify routes that are prone to disruptions
and ensure that the optimal allocation of substitute buses will min-
imize the effects on passengers and increase operational efficiency.
Specifically, we make the following contributions: 1) We create
data-driven statistical models that can estimate the probability that
a given future transit trip will encounter a disruption. 2) We for-
mulate the stationing problem and introduce efficient heuristic
algorithms to find stationing locations that minimize the impact of
disruptions on passenger experience.

The remainder of this paper is organized as follows. Section 2
formulates the problem of forecasting disruptions and optimizing
vehicle stationing in public transit. Section 3 introduces our pro-
posed computational approaches for forecasting disruptions and
optimizing stationing. Section 4 describes our real-world data and

1We define utility later while formalizing the problem.

experimental setup. Section 5 presents numerical results, demon-
strating the accuracy of our forecasts and the improvement in
transit-service operations due to optimizing stationing. Section 6
gives a brief overview of related work. Finally, Section 7 provides
concluding remarks.

2 PROBLEM FORMULATION
In this section, we describe the characteristics of fixed-line transit,
introduce disruption forecasting, and formulate the vehicle station-
ing problem. Fixed-line public transit relies on a set of vehicles
running on a consistent and predictable schedule of trips to service
passengers. Any events or incidents that delay or disrupt buses can
impact their reliability leading to increased wait times, interfere
with transfers, and increase uncertainty. As a contingency, transit
agencies have a limited number of substitute buses, which are de-
ployed in response to disruption and overcrowding events. Having
the ability to forecast possible disruptions allows transit agencies
to station substitute buses in anticipation of such events.

Trip: Fixed-line transit vehicles follow a scheduled assignment of
trips. A trip pertains to individual occurrences of a bus navigating its
assigned route. For a given route 𝑟 ∈ 𝑅, there is a set𝑇 (𝑟 ) containing
all trips on the route. A trip 𝑡 represents a specific instance of a
bus traveling a route in a particular direction at a given time. For
example, the trip 𝑡 of the first bus operating on Sundays for route
𝑟 symbolizes a specific occurrence, distinct from other trips on
that route.

Route + Direction:A bus route, combined with its direction, is a
group of trips that represents a predetermined pathway recurrently
followed. The set 𝑅 contains all unique combinations of routes and
directions in the system, where each combination 𝑟 ∈ 𝑅 uniquely
signifies a specific pathway and direction. For example, outbound
and inbound buses might share identical stops, but since they have
different points of origin and termination, they are distinct in 𝑅.

Stop: Bus stops are strategically positioned along the route, and
they enable the bus service to cater to a wide spatial region. For
a given trip 𝑡 ∈ 𝑇 (𝑟 ) on route 𝑟 ∈ 𝑅, there is a set 𝑆 (𝑡) of stops
for that trip. For a mid-size U.S. city, it is common for some routes
to share one or more stops. This sharing often aligns with many
transit agencies’ practice of following a spoke-hub model which is
often cheaper to develop [7], where most routes have at least their
origin or destination in a central, downtown terminal.

2.1 Disruption Forecasting
To assess the likelihood of a disruption occurring, we formulate
disruption forecasting as a binary classification problem. However,
rather than merely categorizing trips as having a disruption (1) or
not (0), we focus on estimating the probability that a given trip will
be classified as having a disruption. This approach enables a more
granular understanding of the risks associated with different trips.

We assume that we have a dataset of past trips represented as
𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}. Each trip 𝑡𝑖 ∈ 𝑇 is characterized by a vector of
features 𝑋𝑡𝑖 , which includes categorical and numerical variables.
Categorical variables include route identifier combined with its
direction(𝑅𝑡𝑖 ) which is a specific route number followed by its
direction name, ridership (𝑃𝑡𝑖 ), passenger occupancy on the trip,
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service-time windows (𝑆𝑡𝑖 ), and calendar-related variables repre-
senting the date of the trip that contains year (𝑌𝑡𝑖 ), month (𝑀𝑡𝑖 ),
and day of week (𝑊𝑡𝑖 ). Numerical variables capture weather infor-
mation such as precipitation intensity (𝐼𝑡𝑖 ) and temperature. (𝑇𝑡𝑖 )
Thus, we can represent 𝑋𝑡𝑖 as follows:

𝑋𝑡𝑖 = (𝑅𝑡𝑖 , 𝑃𝑡𝑖 , 𝑆𝑡𝑖 , 𝑌𝑡𝑖 , 𝑀𝑡𝑖 ,𝑊𝑡𝑖 , 𝐼𝑡𝑖 ,𝑇𝑡𝑖 ) (1)

Also, each 𝑡𝑖 has a corresponding label 𝑦𝑡𝑖 indicating whether a
disruption was reported during the trip.

The goal of the predictionmodel is to learn Pr[𝑦𝑡𝑖 = 1 | 𝑋𝑡𝑖 ] from
a function 𝑓 mapping the feature vectors to the labels, 𝑓 : 𝑋𝑡𝑖 → 𝑦𝑡𝑖 ,
using the dataset as the training data. However, the inherent ran-
domness of disruptions, coupled with the fact that the occurrences
of disruptions are very rare compared to the number of bus opera-
tions, inevitably makes forecasting disruptions a challenging task.

2.2 Vehicle Stationing
On a typical transit day, the transit agency has access to two dif-
ferent types of buses, regular and substitute buses. Regular buses
are buses that have been scheduled to serve trips across the city
for a given day. Once a regular bus has finished its shift for the
day, they are not available for dispatch. Regular buses travel across
their designated route, picking up and dropping off passengers at
stops along their trip. Collectively, buses will pick up and drop
passengers across 𝐽 stops in the city. Passengers can be affected due
to two types of events: first, at times, buses cannot accommodate
more passengers due to crowding, resulting in overage events that
are temporary, or second, buses can encounter disruptions such as
mechanical failures or accidents that render them unusable for the
rest of the day, which we refer to as disruption events. Substitute
buses are buses that are held in reserve for the purpose of being
dispatched to cover either of these events. These start their day at
the main depot, travel to a predetermined stationing stop to wait
for dispatching, and then end the day at the main depot. Substitute
buses traveling from the main depot to a stationing stop, or from a
stationing stop to a dispatch location, are not considered to be in
service. The distance traveled and time spent by buses when not in
service are called deadhead miles and deadhead time respectively.

Our conversations with the transit agency reveal that existing
stationing strategies are largely ad-hoc, i.e., there are no formal
and established policies for stationing. Buses are traditionally sta-
tioned by leveraging summary statistics from historical data (e.g.,
frequency of disruptions on a route) and domain expertise of transit
operators. Similarly, there are no principled policies for dispatching
substitute buses; buses are dispatched simply based on availability,
with higher priority given to disruption events over overage events.
Due to this, experts often consider contexts such as headways, traf-
fic congestion, and forecasted ridership, before they either dispatch
a substitute vehicle or do nothing in response to an event.

We present a principled optimization formulation for the sta-
tioning problem. Formally, consider a subset of stops 𝑆station where
buses can be stationed using the agency’s budget of 𝑘 substitute
buses. A feasible solution 𝑥 is a 𝑘-subset of 𝑆station (i.e., 𝑥 ⊆ 𝑆station
such that |𝑥 | = 𝑘). Our goal is to find the subset of stops to station
the substitute buses that will minimize their total non-service miles
(𝐷) and non-service travel duration (𝑇 ) while minimizing the total

passengers left behind (𝐿) across all stops. Formally, the problem is:

argmin𝑥⊆𝑆station : |𝑥 |=𝑘 E𝑃

𝐷 (𝑥 ; 𝑃) +𝑇 (𝑥 ; 𝑃) +
𝐽∑︁
𝑗=1

𝐿( 𝑗, 𝑥 ; 𝑃)
 (2)

where 𝑃 is the random variable that denotes the occurrence of
disruptions and overcrowding events. It is worth noting that this
objective is practically impossible to calculate based on first princi-
ples. Thus, in practice, we approximate its value by simulating a
number of outcomes.

3 PROPOSED APPROACH
Our approach consists of two components: 1)We employ a multi-
faceted approach to predict the likelihood of trip disruptions under
given conditions, utilizing a combination of statistical and machine
learning methodologies, including logistic regression [2], extreme
gradient boosting (XGBoost) [4], and Poisson regression [10]. 2)
We identify the best subset of stops for stationing through a combi-
nation of greedy search and simulated annealing [22].

3.1 Disruption Forecasting
Forecasting the likelihood of disruption occurring on a certain trip
is a supervised learning problem. We explore two learning-based
approaches, namely logistic regression and the XGBoost model.
Using the vector of features described in Equation (1), the logistic
regression model can be expressed as:

Pr
[
𝑦𝑡𝑖 = 1|𝑋𝑡𝑖

]
=

1
1 + 𝑒−𝛽0−𝛽1 ·𝑋𝑡𝑖

(3)

where 𝑦𝑡𝑖 is the binary outcome (presence of disruption) for trip
𝑡𝑖 , and 𝛽0 and 𝛽1 are the parameters to be estimated. Note that our
problem focuses on estimating the likelihood of disruptions in a
trip and does not address stop-level prediction; naturally, predicting
which stop might face a disruption is practically infeasible due to
the sparsity of data. The logistic regression is advantageous in that
it is simple and interpretable, so it is well suited for understanding
the impact of individual features on the outcome.

Also, the XGBoost model is employed with the same problem
settings as logistic regression. It is employed for its robust per-
formance and ability to handle complex nonlinear relationships.
Its gradient boosting framework enables the assembly of an en-
semble of weak predictive models, making it capable of capturing
intricate patterns in the data [5]. Moreover, XGBoost provides a
feature importance score, offering valuable insights into factors
significantly influencing disruption likelihood. However, the raw
output probabilities may not always represent the true likelihood
of events. Calibration techniques, such as Isotonic Regression, can
be employed post hoc on the model to adjust the probabilities to
better reflect the true outcomes, thereby increasing their reliability
in practical scenarios. It is a non-parametric approach that can fix
both over-confidence and under-confidence cases well [19].

3.2 Vehicle Stationing
Selecting the best locations to station substitute buses is a combi-
natorial optimization problem that can not be reasonably solved
in linear time due to the exponential possibilities available (over
1000 possible stops across the city). Instead, we select a subset of 25
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Algorithm 1 Greedy Selection
1: 𝐶 ← List of candidate stops
2: 𝐶∗ ← {}
3: 𝑘 ← Number of substitute buses
4: while 𝑐𝑜𝑢𝑛𝑡 (𝐶 ) < 𝑘 do
5: 𝐶 ← 𝐶 \𝐶
6: 𝑐 ← {}
7: 𝑂 = ∞
8: for 𝑐 ∈ 𝐶 do
9: 𝐶 ← 𝑐

10: �̂� = 𝑐𝑜𝑠𝑡 (𝐶 ) ⊲ objective function
11: if �̂� < 𝑂 then
12: 𝑐 = 𝑐

13: 𝑂 = �̂�

14: 𝐶∗ ← 𝑐

15: return𝐶

Algorithm 2 Neighbor Generation
1: 𝐶 ← Candidate stops
2: 𝑥 ← Current solution
3: 𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝑐𝑜𝑢𝑛𝑡 (𝑆 ) ) ⊲ uniformly at random
4: 𝑥 [𝑖 ] = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝐶 \ 𝑥 ) ⊲ uniformly at random
5: return 𝑥

Algorithm 3 Simulated Annealing Optimizer
1: 𝑁 ← Simulated annealing iterations
2: 𝐾 ← 𝐾𝑚𝑎𝑥

3: 𝑥 ← 𝑔𝑟𝑒𝑒𝑑𝑦 (𝑥 ) ⊲ select initial solution using Algorithm 1
4: 𝑂 ← 𝑐𝑜𝑠𝑡 (𝑥 ) ⊲ objective function
5: for 𝑛 = 0 through 𝑁 do
6: 𝑥𝑛𝑒𝑤 = 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑥 )
7: 𝑂𝑛𝑒𝑤 = 𝑐𝑜𝑠𝑡 (𝑆∗𝑛𝑒𝑤 )
8: Δ𝑂 = 𝑂𝑛𝑒𝑤 −𝑂
9: if 𝑎𝑐𝑐𝑒𝑝𝑡 (Δ𝑂,𝐾 ) then
10: 𝑥 ← 𝑥𝑛𝑒𝑤

11: 𝑂 ← 𝑂𝑛𝑒𝑤

12: 𝐾 = 𝐾
𝛾+𝑛 ⊲ cool the temperature

13: return 𝑥 ⊲ best stationing plan

stops for stationing based on the current and potential stationing
locations that the transit agency uses. We then generate an initial
stationing plan using a greedy algorithm, Algorithm 1, that selects
the best solutions using the same objective function in Equation (2).
The resulting stationing plan is then used as the initial solution
to simulated annealing. In simulated annealing, neighboring state
iterations are then generated by randomly selecting a single bus,
and then assigning it to a new random stop, Algorithm 2, with
the constraint that no two buses should be at the same stop at
the same time. Algorithm 3 details how we select the solution set
that gives the minimum cost after 𝑁 iterations, where mutations
are dependent on the initial temperature selected and the current
iteration.

4 EXPERIMENTAL SETUP
4.1 Real-World Data
To conduct our analysis of disruption prediction, we used disrup-
tion data from the transit agency of a mid-sized U.S. city, transit
schedule data in the form of General Transit Feed Specification
(GTFS), Automated Passenger Count (APC) data, and weather data.

Automated Passenger Count data APC data records a variety
of information that transit agencies use to monitor bus conditions.
It uses infrared sensors along doors which trigger whenever they
open for passengers. It records the number of people boarding and
alighting at every bus stop along its trip. It also records the actual
times it arrives and departs at every stop. This allows operators to
react to bus bunching events by adding slack at certain points on
the trip or by dispatching substitute buses.

Disruption data The disruption dataset contains comprehen-
sive information about each disruption, including where and when
it occurred and the underlying cause. This information includes
locations specified by stop names as well as latitude and longitude
coordinates, corresponding to the last stop where the bus termi-
nates operation before the disruption. These locations facilitated
the integration of disruption data with APC and weather informa-
tion, ensuring consistency across datasets. This dataset covers the
period of March 2020 to January 2023, during which time a total of
5,096 disruptions were recorded.

GTFS dataTheGeneral Transit Feed Specification (GTFS) dataset
offers insights into bus schedules, encompassing all planned transit
trips. By aligning this data with disruption data, we could investi-
gate the frequency and patterns of disruptions.

Each transit trip is characterized by unique identifiers depending
on the day of the week, time of day, and bus route. This allows us to
analyze disruptions with a trip of specificity. As there are no trips
between midnight and 4AM, we segmented the 20 service hours
into five time windows: early morning (4AM to 6AM), morning
(6AM to 9AM), mid-day (9AM to 2PM), afternoon (2PM to 6PM), and
evening (6PM to midnight). For the ridership, we divided occupancy
rate into four categories: low (0% to 30%), moderate (30% to 60%),
high (60% to 100%), and over-capacity (> 100%).

Table 1: Overview of Datasets

Data Source Scope Features
APC Agency 2020-2023 ridership, stops
Disruption Agency 2020-2023 GPS location, datetime, stops
GTFS [13] Agency 2020-2023 routes, stops
Weather Darksky 2020-2023 location, temperature, precipitation

4.2 Disruption Forecasting
The disruption forecasting model uses all data shown in Table 1.
For six possible categorical variables which are route identifica-
tion combined with direction, service-window hours, day of week,
passenger capacity, year, and month, we use one-hot encoding to
train in the models. For the logistic regression model, we conduct
the goodness-of-fit test and build 64(26) models using all possi-
ble combinations of the variables. The goodness-of-fit test of the
logistic regression model offers insight into how various indepen-
dent factors affect the probability of disruptions. So, we are able to
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choose the optimal combination among categorical variables. After
deciding what variables are to be used for the model, we compare
the performance of three disruption forecasting models; logistic
regression, XGBoost, and XGBoost with Isotonic Calibration. For
the experiment, we used Python 3.9.12 and Scikit-learn 1.3.0 [15]
for training.

4.3 Simulator
The simulator uses data from APC and GTFS to recreate public
transit activities for a single day. There are three main components
to the simulator: regular buses, substitute buses, and passengers.
Regular buses start and end their day at the main depot after servic-
ing all their trips. They may pick up or drop off passengers at every
stop along their trip. Substitute buses start their day at the main
depot, travel to their predetermined stationing location, and then
end at the main depot. When dispatched to cover for a regular bus,
they must travel from their current location to the stop in question,
accumulating deadhead miles for a period of time. When covering
an overage event, the substitute bus will travel from its current
location to some stop 𝑠 where the event was reported. From then
on, it will travel the same trip as the bus that reported the overage,
until the final stop in the trip. Only upon finishing this would it
be available for dispatch again. When dispatched to a bus that has
broken down, it travels to the last visited stop of the broken bus,
and from then on, covers all the trips that the broken down bus was
meant to service. Only upon finishing this sequence of trips would
the substitute bus be available for dispatch. Substitute buses are
dispatched following a policy. The bus that is nearest to a reported
event will be considered for dispatch, and ties are broken randomly.
If the event that triggered this policy is an overage event, then the
policy will only dispatch the bus if the number of people left behind
is greater than 5% of the current bus’ capacity. However, disruption
events are handled immediately, if there are available substitute
buses. Every time a substitute bus is dispatched, it accrues deadhead
miles and deadhead time.

At each stop, a certain number of passengers can either board
or alight the bus. Passengers can arrive at the stop as early as
10 minutes before the bus arrives and will wait for the bus for a
maximum of 30 minutes. Passengers can board any bus arriving at
their current location as long as the bus is traveling in the same
block, route, and direction, and if bus ridership is less than bus
capacity. If passengers are unable to board the bus, they remain at
that stop. If a disruption event occurs, passengers currently onboard
the bus are unloaded at the last passed stop and will wait for another
30 minutes for another bus to arrive. Any trip on the service day
can encounter a disruption, causing the bus to fail at one of the
stops along the trip, ending the service. A day can have anywhere
from zero disruptions to a disruption at each of its trips.

We address stochasticity in the real world by generating chains
of events for each single day. For each chain, we sample passenger
counts and disruptions independently. Generative models, trained
over ridership at the stop level [21], are used to sample the ridership
forecast at each stop. Boarding and alighting counts are then derived
from this value. Disruption events are sampled from the disruption
forecast model discussed in Section 2.1. We then get the average of
performance of our stationing across all the chains for each day.

This is an event-driven simulator that considers bus arrivals at
stops, overages, and disruptions as events that require a dispatch
decision. The simulator begins with the first passengers arriving at
a stop and proceeds until the final bus returns to the depot for the
last stop of the trip. Passengers who have not been picked up at the
end of the simulation time are considered to have been left behind.
For this paper, we truncate the service day to all trips that start
between 6AM and 1PM. Table 2 lists the rest of the configurations
used in the experiment. The initial temperature was selected after
a hyperparameter search.

Table 2: Simulation Parameters

Parameter Setting

simulation duration 6AM to 1PM
passenger arrival range within 10 minutes
passenger patience 30 minutes
overage threshold ≥ 105%
average number of buses per day 80.0
number of substitute buses 5
number of chains 100
number of days 50
initial temperature 100
local search iterations 500

All simulation experimentswere done onChameleon servers [11]
with 187 GB of RAM and an Intel Xeon CPU with 96 cores, each
with 2.4GHz.

5 NUMERICAL RESULTS
5.1 Disruption Forecasting

Model Performance. The performance of the predictive models is
evaluated using cross entropy as a key metric, where lower values
signify better model performance. We compare cross-entropy over
accuracy due to the dataset’s imbalance, revealing that just 0.2%
of all incidents are disruptions (𝑦𝑡𝑖 = 1). Accuracy, skewed by the
abundance of non-disruptions (𝑦𝑡𝑖 = 0), could mislead. Therefore,
cross entropy, being a more informative metric, is used to accurately
gauge the model’s classification performance, especially concerning
the minority class.

As indicated in Table 4, three models undergo evaluation: Lo-
gistic Regression, XGBoost, and XGBoost calibrated with Isotonic
Regression. XGBoost classifier calibrated with Isotonic regression
shows the best performance, attributed to Isotonic Calibration’s re-
finement of the XGBoost probability estimates, aligning predictions
more closely with actual outcomes.

Using a grid search method, hyper parameter values are selected
for the XGBoost model. When learning rate is 0.1, maximum depth
is 9, minimum child weight is 1, and subsample is set to 0.5, the
model performed the best.

Model and Feature Selection. Five categorical features that are
route identifier combined with direction, service-window hours,
month, and passenger capacity, combined with numerical features
which are weather related-variables like temperature and precipita-
tion shows the optimal result. In detail, logistic regression model –
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Table 3: Result of logistic regression models with different feature sets variables.

Features (Number of features) Train Cross Entropy Test Cross Entropy

Route + Direction, Service Window Hours, Day of Week, Passenger Capacity, Year, Month (6) 0.1320 0.1330
Route + Direction, Service Window Hours, Day of Week, Passenger Capacity, Month (5) 0.0903 0.0912
Route + Direction, Service Window Hours, Day of Week, Passenger Capacity (4) 0.0905 0.0913
Route + Direction, Service Window Hours, Passenger Capacity (3) 0.0946 0.0952
Route + Direction, Passenger Capacity (2) 0.0953 0.0960
Route + Direction, Service Window Hours, Day of Week, Passenger Capacity, Month, Temperature (6) 0.0903 0.0910

Table 4: Results for three disruption forecasting models

Model Train Cross Entropy Test Cross Entropy
Logistic Regression 0.0903 0.0910
XGBoost 0.0872 0.0881
XGBoost + Isotonic Calibration 0.0870 0.0876

Table 5: 𝑝-value of Permutation Test for Number of Disrup-
tions on Trips per Route

Route 3 4 5 6 7 8 9
3 1.0 - - - - - -
4 0.4818 1.0 - - - - -
5 0.6501 0.7945 1.0 - - - -
6 0.7744 0.8496 1.0 1.0 - - -
7 0.6393 0.1294 0.1793 0.2252 1.0 - -
8 1.0 0.4005 0.5305 0.5778 0.5489 1.0 -
9 0.6683 0.3148 0.2746 0.3366 0.8008 0.5264 1.0

one with five categorical features, excluding only the year, demon-
strates the lowest cross entropy value as shown in Table 3. Subse-
quently, an XGBoost prediction model outperformed our logistic
regression model, offering a more refined prediction with an even
lower cross-entropy value.

Moreover, notably, midday to afternoon service-window hours
were more susceptible to disruptions compared to late or early
hours as illustrated in Figure 2. Evening hours shows the lowest
probability of disruptions. We analyze this impact of each feature
by examining the log-odds ratio for route, service-window hours,
and month. Positive odds ratio indicates a higher likelihood of
disruptions.

Lastly, permutation tests are conducted to validate the signifi-
cance of these findings. As shown in Table 5, the result indicated
that disruptions frequencies among routes follow the same distri-
bution, affirming that our analysis is not accounting for potential
data imbalances. These outcomes underscore the robustness of our
predictive model, offering valuable insights into understanding and
forecasting disruptions in real world scenarios.

Features Importance. The XGBoost model’s feature importance
scores, presented in Figure 3, identified service-window hours as
the most crucial predictor of disruption likelihood. According to the
feature-importance results, service-window hours were determined
to be the most important feature in this instance, followed by day
of week, month, and route ID. These observations can help direct
future research and inform decisions based on the output of the
model.
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Figure 2: Log-Odds and Probability Values for Features.

5.2 Vehicle Stationing
We compare our results to the three different stationing assignments
that the public transit agency uses. Garage represents the absence
of a stationing plan, all substitute buses are kept at the main garage.
Hub represents a stationing plan where all substitute buses are
stationed at the central hub. Finally,Agency, represents the current
stationing plan being used by the transit agency, based on our
conversations with them.

Simulation and random local search. For every iteration of the
random local search, we simulate the same day with 100 different
chains of events. Figure 4 shows the progress of the objective scores
for a single day. The initial allocation generated by the greedy ap-
proach results in a lower cost than the baselines, and within 50
iterations, we are able to find a better stationing selection. Figure 5
shows that the majority of dates, (> 60%), are able to find the mini-
mal objective cost within the first 100 iterations. Across multiple
days, the stationing plans generated by the search algorithm re-
sult in much lower scores compared to the other stationing plans.
Interestingly, having 5 buses stationed in the main hub can often
outperform the searched stationing plan if there are no constraints
on stationing. Finally, we compared whether optimizing once for
multiple days would have better performance than running the
optimizer every day. This is comparable to the agency running the
algorithm a single time and then maintaining the same stationing
across multiple days. Figure 7 shows that in almost all instances,
optimizing for a single day will outperform a solution generated
on multiple days.

Stationing using forecasted disruptions. We use the stationing
plans generated by the search algorithm on passenger forecast and
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Table 6: Average cost of stationing plans across several days

Stationing Deadhead miles Deadhead minutes Passengers left
Agency 167 175 158
Hub 163 170 158

Garage 170 179 158
Search 167 175 132

are based on the actual events on which the forecasting model was
trained. Figure 8 shows that the current stationing plan used by the
transit agency adapts well to day-to-day trips, including overages
and possible disruptions, compared to simply stationing them at the
garage or without any stationing plans. Meanwhile, our proposed
stationing plan outperforms all other plans. This shows that the
stationing plans based on forecast data are still able to perform
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better than baseline stationing plans. Table 6 shows that across
several days, our approach is able to reduce the number of people
left behind by 26 while matching both deadhead miles and minutes
used by the current stationing plan used by the transit agency. This
shows that by combining disruption forecasts and introducing an
efficient heuristic algorithm, we can improve transit reliability with
almost no cost on the part of the agency.

6 RELATEDWORK
Disruption forecasting Public transit disruption forecasting has
been a relatively under-researched area. Traditionally, the focus
has been on predicting traffic accidents, computing delay times,
or estimating passenger flow when disruptions occur, rather than
forecasting the disruptions themselves. This has proven challenging
due to the unpredictability of disruptions and the scarcity of data
concerning them [23]. However, recent studies have shown that
non-parametric machine learning models can be utilized to analyze
extensive datasets comprising numerous independent variables to
forecast traffic accidents and disruptionswith high accuracy [14, 26].

For instance, Yan et al. [26] employed the random forest model to
forecast traffic accidents in the USA with high accuracy. Similarly,
Parsa et al. [14] utilized XGBoost to predict traffic disruptions with
high accuracy. The utilization of these non-parametric models pro-
vides a further advantage by elucidating the variables that play a
crucial role in the prediction of disruptions [3]. Another study by
Liu et al. [12] examines the potential of using automated collection
data to comprehensively analyze unplanned disruption impacts.
They propose a systematic approach to evaluate disruption impacts
on system performance and individual responses in urban railway
systems using automated fare collection (AFC) data.
Substitute Bus Services: Most of the work done in public transit
using buses centers around headway control or bunching preven-
tion. Bunching can be attributed to several factors such as traffic
congestion or clustered passenger arrivals. Traditional solutions
to this are schedule-based approaches and adaptive headway ap-
proaches [6]. Adaptive headway control introduces bus holding
times at certain stops on a route to reduce headway gaps. Petit
et al. shows how dynamic bus substitution strategies can be used
to contain deviations in the schedule. Zhang and Lo studied the
optimal time to dispatch a substitute bus. They found that buses
should only be dispatched if an event takes longer than a period of
time.
Ridership Prediction: When considering route planning for pub-
lic transit, agencies need to be aware of the ridership. Thus, this has
been well studied. The current state of the art uses non-parametric
approaches which build upon the non-linear relationships between
the input and output variables without any prior knowledge. Neural
network models, particularly LSTM [25] are used to take advantage
of temporal characteristics of travel demand while incorporating
spatial information such as neighborhood and census tracts [8].

7 CONCLUSION
In this work, we presented a thorough strategy for solving the cru-
cial problem of transit disruptions. We have created new ways for
transportation agencies to proactively reduce delays and crowd-
ing by creating data-driven statistical models that precisely assess
the possibility of disruptions. Our multifaceted methodology en-
abled the development of specific strategies that address both the
macro and micro levels of transit service. Moreover, our approach
minimized the number of passengers left behind by the strategic
stationing of additional vehicles. In this way, the efficiency of tran-
sit operations can be increased, and the passenger experience can
be greatly enhanced. The implications of this approach go beyond
simple operational improvements. This work contributed to a more
robust, responsive, and customer-focused public transportation
system by setting the standard for predictive modeling for transit
disruptions. Future research may look towards improving forecast
performance even more, modifying it for other transit systems,
and integrating it with real-world decision support settings. This
attempt is a significant step towards a more dependable and effec-
tive public transit system, where disruptions are managed not just
reactively but also in advance, making proactive mitigation crucial
for contemporary urban mobility.
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