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Abstract—Learning Enabled Components (LECs) are widely
being used in a variety of perceptions based autonomy tasks
like image segmentation, object detection, end-to-end driving,
etc. These components are trained with large image datasets with
multimodal factors like weather conditions, time-of-day, traffic-
density, etc. The LECs learn from these factors during training,
and while testing if there is variation in any of these factors, the
components get confused resulting in low confidence predictions.
Those images with factor values, not seen, during training are
commonly referred to as Out-of-Distribution (OOD). For safe
autonomy, it is important to identify the OOD images, so that
a suitable mitigation strategy can be performed. Classical one-
class classifiers like SVM and SVDD are used to perform OOD
detection. However, multiple labels attached to images in these
datasets restrict the direct application of these techniques. We
address this problem using the latent space of the β-Variational
Autoencoder (β-VAE). We use the fact that compact latent space
generated by an appropriately selected β-VAE will encode the
information about these factors in a few latent variables, and that
can be used for quick and computationally inexpensive detection.
We evaluate our approach on the nuScenes dataset, and our
results show the latent space of β-VAE is sensitive to encode
changes in the values of the generative factor.

Index Terms—β-VAE, Disentanglement, KL-divergence, Out-
of-Distribution

I. INTRODUCTION

Emerging Trends: Cyber-Physical Systems (CPS) are
heavily relying on the use of Learning Enabled Components
(LECs) [1] to achieve higher levels of autonomy. Specially, in
autonomous vehicles, LECs based on perception have become
very prominent to perform a variety of perception and control
tasks like image segmentation, object detection and end-to-end
learning. These LECs are usually trained with large multi-label
datasets (e.g. nuScenes [2]) containing images with various
multimodal generative factor like lighting (day, night), weather
(fog, rain), traffic density, etc. The LECs learn from these
common factors and performs exceedingly well if they remain
same during testing. However, if the test images have a varia-
tion in the values of these factors, then the LECs get confused
resulting in low confidence predictions. Those images with
factor values, not seen, during training are commonly referred
to as Out-of-Distribution (OOD). For safe autonomy [3], it
is important to identify the OOD images, so that a suitable
mitigation strategy can be performed.

State of the art: The problem of OOD detection for multi-
label datasets is often transformed into several one-class OOD
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Fig. 1: Images from different scenes of the nuScenes dataset [2].
These image have multiple generative factors like time-of-day,
weather, pedestrians, traffic, etc. For example, the top right corner
image has multiple labels of clear weather, morning, low-traffic, no-
pedestrian.

detection problem. The authors in [4] address the similar
problem by synthesizing the dataset into mutually exclusive
partitions and then train an ensemble of one-class classifiers
for OOD detection. One-class classifiers using classical kernel-
based methods [5] and one-class SVM [6] have also been used
for OOD detection. However, their inefficiency in operating
on high-dimensional images has resulted in growing interests
towards deep-learning models. An example of a deep learning
model is the Deep Support Vector Data Description (Deep
SVDD), which has performed exceptionally well as one-class
OOD detectors [7]. It draws a compact hyper-sphere enclosing
all the training samples, and the OOD samples will be mapped
out of this hyper-sphere. Then the distance of the samples from
the center of the hypersphere is used as the metric for OOD
detection.

Another widely used deep learning technique uses gener-
ative models such as Autoencoders (AE) [8] and Variational
Autoencoder (VAE) [9]. These models use encoder-decoder
neural networks to learn the compression and decompression
of the training samples. In the process, it provides a com-
pressed latent representation space that encodes information of
all the generative factors in the training samples. VAE encodes
the latent space as distributions [9] of generative factors,
while the AE just encodes the latent space as a deterministic
mapping of the inputs to outputs. The fact that these models
can reconstruct the normal samples well and not the OOD
samples is exploited for OOD detection.

Existing AE and VAE based OOD detection work can
be categorized into reconstruction-based methods and latent
space-based methods. Reconstruction based methods involve
computation of normalized difference between each pixel
value of the original image and the reconstructed image i.e.
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Fig. 2: (a) the proposed three-phase methodology for OOD detection. Phase-I: Dataset partitioning and Hyperparameter selection. Phase-II:
β-VAE and informative latent variable selection. Phase-III: Online detection of variations in generative factor value, and (b) the data from
a partition is decomposed into several subsets based on the generative factor values. A subset with one generative value is used for training
the β-VAE. A subset containing a mix of different generative factor values is used as validation dataset.

the reconstruction error or the reconstruction probability [9].
The main disadvantage of the reconstruction-based methods
is that they are more computationally expensive and, in some
cases, can lead to the wrong prediction due to presence of
OOD sample on learned manifold. On the other hand, Latent
space-based methods [10] compare the distance between the
latent distributions of the test and train images. Different
metrics like Euclidean distance, Bhattacharyya distance, and
Kullback–Leibler (KL) divergence have been used.

Research Gap: A major problem is that these methods
have typically been applied to either single-label datasets or
datasets with clear partitions (with each partition having mu-
tually exclusive labels). However, the real-world autonomous
driving datasets (e.g. nuScenes [2]) are multi-labelled, and
synthesizing it into clear partitions based on labels is not
possible. For example, each image of nuScenes dataset has
multiple labels like time-of-day, weather, pedestrians, traffic-
density, vehicle types, etc. Based on these labels, the dataset
can only be categorized into approximate partitions, such that
each partition has labels of one generative factor fixed, while
the labels of other generative factors still change. In such
approximate partitions, none of the discussed AE-based OOD
detection methods will be able to detect changes in specific
generative factors [11]. This is because these OOD detection
methods (especially Deep SVDD) can only work as one-
class classifiers to learn all the images in the partition, while
rejecting the images from the other partitions as OOD.

Our Contributions: We propose a three-phase methodol-
ogy to synthesize the multi-label dataset into smaller partitions
and then train a β-VAE [11] for each partition to generate
a compact latent space for OOD detection. β-VAE is a
classical VAE with the β hyperparameter, that balances the
reconstruction and information channel capacity. Selecting
appropriate β > 1, provides β-VAE the capability to generate
a disentangled latent space of the generative factors in the
data. This means, that it is possible to identify a single latent
variable in the latent space which is sensitive to changes in
the values of a specific generative factor, even when the data
comes from a partition with multiple labels. The disentangled

latent space along with quantitative metrics like KL-divergence
and Mean Square Error (MSE) are used in our methodology.

Briefly our method works as follows. We synthesize the
training dataset into partitions based on imprecise labels of
image generative factors, such that one generative factor in
the partition is fixed, while the others may vary. We then
train a β-VAE for this partition. The β-VAE is trained as a
one-class classifier to learn information only about the factor
that was fixed in the partition. Then during testing, we query
each of the trained β-VAE detectors to identify changes in the
generative factor value for which it was trained. This approach
requires less computational resource compared to the other
OOD detection methods we mentioned. For example, SVDD
requires a larger latent dimensional space (1024, or 2048) to
perform one-class OOD detection. The other benefit is that
we can tune the sensitivity of the detectors by adjusting the β
parameter. In the next section we discuss the methodology to
design and use the proposed β-VAE OOD detector.

II. PROPOSED METHODOLOGY

In this section, we discuss a three-phase methodology (see
Fig. 2) to select a β-VAE that is sensitive to changes in the
values of a specific generative factor.

A. Preliminaries

β-VAE is a generative model that consists of two attached
neural networks named image encoder and decoder. The
encoder and decoder learn the posterior distribution qφ(z|x)
and likelihood distribution pθ(x|z) respectively. To train the
β-VAE, a function named Evidence Lower Bound (ELBO) is
maximized, which is the lower bound for the likelihood of
data. Eq. (1) presents the definition of ELBO function.

L(θ, φ, β;x, z) = Eqφ(z|x)[logpθ(x|z)]− βDKL(qφ(z|x)||p(z))
(1)

The expression on the right side in Eq. (1) denotes the
reconstruction likelihood, which guarantees the similarity be-
tween the reconstructed image and the input image. The
regularization term in the right hand side of the equation
ensures that the distribution learned by β-VAE is similar to
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a predefined distribution. It consists of the KL-divergence be-
tween the predefined reference distribution of latent variables
(P (z)), which is fixed as a Gaussian distribution with µ=0,
σ=1 and the distribution learned by encoder segment.

Disentanglement as defined in [11], means that each latent
variable mainly encodes the information related to a specific
generative factor, and any perturbation of that generative
factor will result in significant changes to the values of that
latent variable. A β-VAE has two hyperparameters, number
of latent variables (nLatent) and β, whose values need to be
optimally tuned to obtain a disentangled representation of the
latent space. There is no straightforward recipe for finding
optimal hyperparameters. However, results from a previous
work [11] has shown that β > 1 can better disentangle
latent space. An important thing to note in this discussion is,
disentanglement can be achieved only if the generative factors
in the data are independent. Real world datasets (e.g. nuScenes
[2]) may not have independent generative factors, so achieving
disentanglement is not possible. So, we try to factorize the
latent space to identify the informative latent variables and
perform detection using them.

B. Phase-I: Dataset partitioning and Hyperparameter selec-
tion

As the first pre-processing step, we list some possible image
generative factors in the dataset. Then, we divide the dataset
of images {x1, x2, ......., xN} into partitions§ based on the
generative factors, such that images belonging to a partition
comprises of a specific range of values of the generative factors
and are specific to the case study and the dataset considered
(details are presented in Section III). As shown in Fig. 2-
b, we split the partition data into training, validation and
testing subsets. The training set has images of one generative
factor value (e.g. day). The validation set has images from
the generative factor with values leading to OOD (e.g. night,
evening). The test set has a mix of images from all values
of generative factors. However, the test images are not used
during training or validation.

As discussed in II-A, β and nLatent are the two hyperpa-
rameters of β-VAE that needs to be selected. Selecting the
right parameters is very important to obtain a disentangled
latent space, but finding optimal values is still an unsolved
problem [12]. However, as suggested in [12], we use manual
hyperparameter search [13] over β ∈ [b1, b2, .......bl] and
nLatent ∈ [n1, n2...., nl] to find an optimal combination which
minimizes ELBO (Section II-A). This search returns a set of
β and nLatent combination which is used to train a set of
β-VAE’s.

C. Phase-II: β-VAE and informative latent variable selection

The most important phase of our methodology, has two
steps: First, we select a β-VAE from the list of β-VAE’s
trained in phase-I. For this we use the following metrics: (1)
Reconstruction quality: we use reconstruction error of the

§Note that these are not clean partition and contain labels from other
generative factors as well.

validation dataset as a metric to select an appropriate β-VAE.
For this we compute the average mean square error (MSE)
for the validation dataset images and then select the β-VAE
which has the largest MSE. We base this selection on the fact
that an appropriately selected β-VAE will poorly reconstruct
an image from the other generative factor value, and will
provide the largest MSE error, and (2) Regularization term:
we use the regularization term (Eq. (1)) or the average KL-
divergence across all the latent variables as the metric for β-
VAE selection. We hypothesize that a combination of the two
metrics should be used to select an appropriate β-VAE.

Next, we identify the latent variables that are sensitive to
changes in the generative factor value. As we are designing
a chain of detectors for different partitions, we restrict the
computational requirement of each detector by using only a
single latent variable. For this, we find a single latent variable
that shows highest sensitivity to the variations in the factor.
Using higher number of latent variables could improve the
detection results, however, it increases the detection time.
For identifying the latent variable, we perform the following:
Step1- we compute the KL-divergence of the images in the
training dataset. The KL-divergence is computed as the dissim-
ilarity between the generated latent distribution and standard
normal (µ = 0, σ = 1). The KL-divergence metric is given in
Eq. (2) below.

KL = DKL(qφ(z|x)||N (0, I)) (2)

where, N (0, I)) and qφ(zn|x) are the normal distribution
and the distribution generated by the encoder of a β-VAE for a
latent variable zn respectively. Here n is the number of latent
variables. Step2- we compute the KL-divergence of all the
images in the validation dataset (similar to Step1). Step3- we
use the KL-divergence values computed in Step1 and Step2,
to calculate an average KL-divergence difference across each
latent variable using Eq. (3).

KLdiff = | 1
N

N∑
l=1

KLtl −
1

N

N∑
l=1

KLvl | (3)

where, KLtl indicates the computed KL-divergence of a
latent variable in the training dataset, and KLvl indicates the
computed KL-divergence of a latent variable in the validation
dataset. The N is the number of samples in the dataset. We
compute this difference independently across all the latent
variables (z). We then choose the variable with the largest KL-
divergence difference to be the variable encoding information
about that generative factor.

Then, we choose the threshold (τ ) for OOD detection such
that, the KL-divergence of the majority of the training samples
lies below τ and the majority of the validation dataset lies
above τ . As a heuristic, we set this threshold to at least be
above the 70th percentile of the training sample KL-divergence
values. This value is case study specific, any τ that can clearly
differentiate between the train and validation samples KL-
divergence value should be chosen.
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Fig. 3: (a) reconstruction of day and night images by different β-VAEs. For all the three β and nLatent combinations, the night images are
reconstructed poorly. From this, we hypothesize that all three β-VAEs are sensitive to the time-of-day generative factor. (b) reconstruction of
low-traffic and high-traffic images by different β-VAEs. For β=1.8 and nLatent=5, the β-VAE reconstructs the low-traffic images successfully,
while poorly reconstructing the high-traffic images. For other combinations, the reconstruction of high-traffic is similar to the low-traffic
images. (c) the average KL-divergence for different β and nLatent combinations selected for the time-of-day partition. As seen all the β
values for nLatent=30 has the lowest KL-divergence compared to the other nLatent. So, we choose nLatent=30 in our experiment. (d) the
average reconstruction MSE of validation images for different β and nLatent combinations for the time-of-day partition. We use the average
MSE as a metric for β-VAE selection. For the time-of-day partition, all the β-VAEs reconstruct with a similar MSE, indicating all of them
are capable of encoding information about time-of-day.

D. Phase-III: Online detection of variations in generative
factor value

For online detection, we deploy a chain of β-VAE’s with
each one detecting variation in a specific generative factor
value. For example, we design one β-VAE each to detect
variations in the specific value of weather conditions, lighting
levels, time-of-day, etc. In this setup, the test images are passed
through the chain of β-VAE’s, and in each β-VAE we compute
the KL-divergence (using Eq. (2)) of the latent variable that
was identified in the previous phase. We then compare the KL-
divergence value against τ . A value greater than τ indicates a
variation in the generative factor that the β-VAE was trained
to identify.

III. EVALUATION

We evaluated our methodology on nuScenes dataset [2]. We
run all experiments on a test machine with an AMD Ryzen
Threadripper 16-core processor and 4 GPUs.

A. Phase-I: Dataset partitioning and Hyperparameter selec-
tion

Dataset: The nuScenes dataset used for evaluation com-
prises of 1000 scenes, each 20s long and fully annotated with
3D bounding boxes for 23 object classes and 8 attributes. Each
scene is provided with a description that conveys additional
information regarding the time-of-day, weather, traffic, road

type, scenery, rain, pedestrians, night lights, and the vehicle
type. Using this information, we decompose the dataset to
partitions, such that each partition has images of a specific
generative factor irrespective of the others.

For our experiments, we created three partitions based on
the factors, time-of-day, traffic, and pedestrians. The time-of-
day partition has images from both day and night scenes. The
traffic partition has images from scenes containing low and
high number of vehicles. The pedestrian partition has images
from scenes containing low and high number of pedestrians.
The training dataset from each partition is curated to have
images from one of the generative factor values (e.g. day).
The validation dataset has images from all the generative
factors values (e.g. day and night). For testing we prepare
two test-sets: test-set1 has images from same scene with same
generative factor value (e.g. day), test-set2 has images from
multiple scenes but with different generative factor value (e.g.
night). The test-set2 images are not used during training.

Partitions: For the time-of-day partition, the training dataset
consists of 1000 day images, irrespective of the values of the
other generative factors. Test-set1 contains 100 day images that
is not seen during training. Test-set2 contains 100 night images
from multiple scenes. The traffic and pedestrian partitions have
the same training dataset but different test dataset. This is
important to show how detectors sensitive to different labels
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can be designed using the same training data. The training
dataset for these partitions consists of 1000 low-traffic images
without pedestrians. Test set1 contains 100 low-traffic and no
pedestrian images that is not used during training. Test-set2
contains 100 images of high-traffic with pedestrians and these
are considered to be OOD for the two partitions.

Hyperparameter selection: We performed a manual search
over a list of β ∈ [1.0, 1.9], varying it in steps of 0.1 and
nLatent ∈ [5, 10, 20, 30] to select a set of β-VAE’s that
resulted in loss lower than 1 x e−6. For this we designed
a β-VAE that was based on the NVIDIA DAVE-II [14] CNN.
The encoder network has three convolutional layers 24/36/48
with (5x5) filters and two convolutional layers 64/64 with
(3x3) filters and four fully connected layers with 1164,100, 50
and 40 units. A symmetrical decoder architecture is designed
as the other end. We then train the model along with the
hyperparameters for 100 epochs at learning rate = 1 x 10−5,
using adam optimizer. The search returned a set of β-VAE’s
with low ELBO loss. For all three partitions, several β
values with nLatent=30 returned the lowest ELBO and average
KL-divergence loss. The average KL-divergence loss across
different hyperparamter combination is shown in Fig. 3-c.

B. Phase-II: β-VAE and informative latent variable selection

Time-of-day partition: Fig. 3-a shows the images recon-
structed by different β-VAE’s. Images R1 to R3 represent
reconstruction of day images while images R4 to R6 shows the
reconstruction of night images. We observe that all the three
β-VAE’s reconstruct the day images with a reasonable quality
and the night images with poor quality. Values of the average
reconstruction mean square error (MSE) is shown in Fig. 3-d.
The average MSE is very similar for all the combinations of
β-VAE’s, indicating all the three β-VAE’s are sensitive to the
changes in the time-of-day factor. Therefore to choose one β-
VAE among the three we compute the average KL-divergence
of all the latent variables.

Fig. 3-c shows the average KL-divergence loss for the
different β-VAEs. From this we found β=1.8, and nLatent=30
combination resulted in the lowest KL-divergence loss, so we
selected it. We then identified V6 (the 6th latent variable of
the 30 latent variables) to be most sensitive to variation in
time-of-day value, so selected it for OOD detection.

Traffic partition: Fig. 3-b illustrates the image reconstruc-
tions by different β-VAE’s for the traffic partition. In Fig. 3-
b, R1 to R3 represents reconstruction of low-traffic images
while R4 to R6 shows the reconstruction of high traffic images.
The β-VAE with β=1.6, and nLatent=30, reconstructs the high
traffic images poorly compared to the other combinations. So,
we consider β-VAE trained with this specific combination to
be highly sensitive to changes in traffic. For the selected com-
bination of β-VAE hyperparameters, we found latent variable
V15 (the 15th latent variable of the 30 latent variables) to be
the most sensitive to variation in traffic information.

Pedestrian partition: Selecting a β-VAE for encoding in-
formation about pedestrians was challenging, as none of the β-
VAE could successfully reconstruct the pedestrian information.

75

Fig. 4: Selecting threshold using the training and validation datasets
of time-of-day partition. We set the threshold τ75 at the 75th
percentile of the KL-divergence value. Any test sample with KL-
divergence value > τ75 will indicate the value of generative factor
has changed.

None of the β-VAE’s trained in phase-I were sensitive enough
to capture variations in the values of pedestrian factor. So, we
selected the β-VAE with β=1.8, and nLatent = 30 based on
the average KL-divergence loss. Similar to the other partitions
we found latent variable V30 (the 30th latent variable of the
30 latent variables) to be sensitive to variation in pedestrian
information.

Factor
Selected β,

nLatent,
latent variable

KL-divergence
Threshold (τ )

% Test images
detected OOD

Time-of-day
β = 1.8,

nLatent = 30,
V6

τ=4.0
(75th percentile

of training
images)

Test-set1: 1%
Test-set2: 95%

Traffic
β = 1.6,

nLatent = 30,
V15

τ=1.45
(70th percentile

of training
images)

Test-set1: 10%
Test-set2: 74%

Pedestrian
β = 1.8,

nLatent = 30,
V30

τ=0.06
(92th percentile

of training
images)

Test-set1: 0%
Test-set2: 100%

TABLE I: The summary of results from the three partitions. The
selected β-VAE hyperparameters, most informative latent variable, τ
and the % of test OOD images detected is listed. The test results are
reported based on five trail runs.

Next, we find τ for each of the partition. As discussed
in Section II-C we select τ as the percentile of the training
samples. Fig. 4 shows the τ selection for time-of-day partition.
Based on our experiments we found τ75 as the optimal
threshold to avoid high false positives. Table I summarizes
the τ values of each partition.

C. Phase-III: Online detection of variation in generative fac-
tor value

During online detection, the test images were passed
through all the three β-VAE’s in parallel. In each β-VAE de-
tector, the KL-divergence of the test image latent distributions
was computed and compared against the identified τ . A KL-
divergence value was greater than τ indicated the generative
factor value of the test image had changed. Table I summarizes
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some key detection results from the three partitions. For
compiling the performance of the detectors, we compared the
outcome of the detector to the actual generative factor label.
For example, for time-of-day partition if the actual image label
was day, we compare this against the detector result.

For the time-of-day partition, the β-VAE detector with
(β=1.8 and nLatent=30) identified 99% of the images from
test-set1 to be in-distribution, while it correctly identified 95%
of images from test-set2 to be OOD. For the traffic partition,
the β-VAE detector with (β=1.6 and nLatent=30) identified
90% of the images from test-set1 to be in-distribution, while
it correctly identified 74% of images from test-set2 to be OOD.
Also, for the pedestrian partition, the detector with (β=1.8 and
nLatent=30) identified 100% of the images from test-set1 to
be in-distribution, while it correctly identified 100% of images
from test-set2 to be OOD. Also, performing the detection using
a single latent variable was faster as it took an average time
of 35 ms as compared to 330 ms for checking all 30 latent
variables. This low detection time allows for processing higher
frames (∼20 FPS), which makes our detection mechanism
suitable for CPS testbeds like DeepNNCar [15].

D. Discussion and Future Work

Our evaluations show that β-VAE detectors can quickly
identify variations in the values of a specific generative factor
with very few false positives. The OOD detection results
depend on the threshold selection. Our threshold selection
criteria aims at reducing the false positives, so we try to find
a threshold value that encompasses most of the training data
samples. In addition, the detection results were also influenced
by the complexity of the scene and the generative factor of
interest. The time-of-day factor was simpler among all three
factors as its variation is evident and could be encoded by
any of the β-VAE’s hyperparameter combination. However,
identifying variations in the traffic factor and the pedestrian
factor was complicated as their variations were much subtle
compared to time-of-day. Detecting variation in these factors
was scene specific (background scenery). For scenes with
too much variation in the background information, these β-
VAE’s did not work reliably. For these scenes, the background
information got encoded in all the latent variables and finding a
latent variable encoding information about traffic or pedestrian
was difficult.

Currently, we use minimum ELBO as our hyperparameter
selection criteria, but this does not guarantee the selection of
optimal hyperparameters as explained in [12]. To address this
we are working towards using a better selection criteria using a
disentanglement metric like the BetaVAE metric [11]. Also, we
are currently using a single threshold value for OOD detection,
which results in high false positives, to overcome this we are
working on incorporating change point techniques over a time
window to consider a series of image for OOD detection.

IV. CONCLUSION

In this work, we discuss the problem of detecting changes in
the values of generative factors of images in large multimodal

autonomous driving datasets. As discussed, these datasets
cannot be clearly partitioned, thus making it difficult to
apply the existing OOD detection methods. We address this
problem using the disentangled latent spaces of the β-VAE.
For performing OOD detection using β-VAE, we provide
a methodology to: (1) select an appropriate β-VAE with
right disentanglement, and (2) select a latent variable that
is sensitive to changes in a specific generative factor. The
selected latent variable is then used for OOD detection. We
have further illustrated the utility of our methodology on the
nuScenes dataset.
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