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ABSTRACT
One of the key requirements for designing safety critical cyber
physical systems (CPS) is to ensure resiliency. Typically, the cy-
ber sub-system in a CPS is empowered with protection devices
that quickly detect and isolate faulty components to avoid failures.
However, these protection devices can have internal faults that
can cause cascading failures, leading to system collapse. Thus, to
guarantee the resiliency of the system, it is necessary to identify
the root cause(s) of a given system disturbance to take appropriate
control actions. Correct failure diagnosis in such systems depends
upon an integrated fault model of the system that captures the
effect of faults in CPS as well as nominal and faulty operation of
protection devices, sensors, and actuators.

In this paper, we propose a novel graph based qualitative fault
modeling formalism for CPS, called, Temporal Causal Diagrams
(TCDs) that allow system designers to effectively represent faults
and their effects in both physical and cyber sub-systems. The paper
also discusses in detail the fault propagation and execution seman-
tics of a TCD model by translating to timed automata and thus
allowing an efficient means to quickly analyze, validate and verify
the fault model. In the end, we show the efficacy of the modeling
approach with the help of a case study from energy system.

CCS CONCEPTS
• Computer systems organization → Embedded and cyber-
physical systems; •Theory of computation→ Formalisms; Ver-
ification by model checking.
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1 INTRODUCTION
The last decade has seen a significant research activity in the de-
velopment of Cyber Physical Systems (CPS) as a result of advance-
ment in communication technologies and embedded systems [18].
A CPS consists of 1) a physical or engineered system containing
mechanical, chemical, or biological processes (realized without dig-
ital computers), and 2) a cyber system comprising of a network
of computing devices that manage the physical system with the
help of sensors and actuators. One of the key requirements for
designing safety critical CPS such as Cyber Physical Energy Sys-
tems (CPES) is to ensure resiliency. To achieve this requirement,
the cyber sub-system in a safety critical CPS is empowered with
dedicated protection devices that detect anomalies in physical plant
and mitigate their effects by taking appropriate remedial actions.
Typically, the protection devices are arranged redundantly to allow
multiple devices to detect and mitigate fault in a section of the
system. However, the protection devices along with sensors and
actuators can have internal faults that can alter the anticipated fault
trajectory, leading to increased instability in the system resulting in
cascading failures. According to North American Electric Reliability
Corporation, nearly all major system failures in the past decades in-
cluding recent blackouts, excluding those caused by severe weather,
include misoperations of protection system as a factor contributing
to the propagation of the events [22]. Thus, a thorough analysis
of fault effect propagation including the behavioral verification
of protection devices in the cyber system becomes imperative to
assure resiliency in any safety critical CPS.

In this paper, we propose a novel graph based qualitative fault
modeling formalism, Temporal Causal Diagrams (TCDs), that al-
lows system designers to easily model the effects of fault propa-
gation in the physical system and at the same time analyze and
verify the response of protection devices to such faults while con-
sidering both nominal and faulty behaviors. Specifically, we make
the following technical contributions, 1 Discuss various elements
of TCD modeling language with the help of a simple example. 2
Describe the fault propagation and execution semantics of a TCD
model by translating it to a network of Timed Automata [5]. 3
Show the efficacy of the approach with the help of a case study
from CPES.

The rest of the paper is organized as follows: Section 2 discusses
the existing CPS fault modeling techniques. Section 3 describes
the modeling formalism with the help of an exemplar. The same
section also provides a detailed description of fault propagation
and execution semantics of a TCD model with the help of timed
automata followed by translation rules to transform a TCD model
to a corresponding timed automata. Section 4 presents the case
study that describes a TCD model for capturing the interactions
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between the progression of faults in CPES (transmission lines) and
the behavior of protection devices (distance relays) along with
simulation and verification results. Finally, section 5 discusses the
concluding remarks and future work.

2 RELATED RESEARCH
Typically, the analysis of a CPS is performed using Hybrid Au-
tomata [4]. There exist several tools such as Ptolemy [8], State-
flow [16], SpaceEx [12], PHaVer [11], etc that are widely used to
model, simulate and verify hybrid systems. However, simulating
and verifying hybrid automata is a computationally expensive pro-
cess that can take a large amount of time. Moreover, in safety critical
CPS such as the energy system, describing the change in continuous
variables in different modes of the automaton as a result of fault
and protection system operation is very difficult. The quantitative
modeling approaches, such as hybrid automata, in general, suffer
from poor scalability of validation and verification times with the
increase of continuous variables due to expensive solvers and huge
state space involving real valued state variables respectively.

Another widely used approach for fault analysis in dynamic
systems is based on qualitative modeling techniques such as Signed
Directed Graphs [20], Temporal Causal Graphs [7], Fault Trees [17],
Temporal Fault Propagation Graphs [1]. A qualitative fault model is a
surrogate model that explicitly represents the effect of faults on the
measurements associated with state variables. The relation between
fault and its effect on measurements is expressed using qualitative
functions instead of the mathematical function used in analytical
models. Qualitative models significantly reduce the state space and
are easier to analyze. However, these techniques are not suited for
modeling the behavior of the discrete protection system as they
lack constructs to represent discrete states and transition functions.
There are well studied approaches based on Automata theory [21],
Discrete Event System Specification [19], and Petri-nets [13] that
model the behavior of the protection system as a discrete event
based system.

A better approach for analyzing fault propagation in safety criti-
cal CPS should be a combination of the qualitative fault modeling
methodology to capture the dynamics of fault propagation in the
physical system and discrete event based systems to represent the
response of the protection system including sensors and actuators
in the absence or presence of cyber faults.

3 APPROACH
Our approach for modeling faults and their propagation is based on
Temporal Fault Propagation Graphs (TFPG) [2] that captures the
causality and temporal characteristics of fault effect propagation in
dynamic systems. The classical TFPGmodel is a qualitative discrete-
event model that captures the causal and temporal relationships
between faults (causes) and discrepancies (effects) in a system,
thereby modeling the fault cascades while taking into account
propagation constraints imposed by operating modes and timing
delays.

The TFPG model is generic and has been applied to represent
faults and their propagation in various physical domains [3]. How-
ever, it is incapable of modeling nominal and faulty behavior of

discrete systems such as fault-protection devices. These fault protec-
tion components are designed to mask the effect of physical faults
by isolating the faulty component from the system. Additionally,
the fault protection components can introduce their own failure
modes such as missed and spurious detection faults that can alter
the trajectory of fault effect propagation in the system.

We propose a new graphical formalism, Temporal Causal Dia-
gram (TCD), that is based on a discrete-event abstraction of the
system which can model the interplay of protection system be-
havior and the physical fault trajectories. It contains TFPG as an
embedded sub-model along with one or more Time Triggered Au-
tomata (TTA) [15] to represent the faulty and nominal behavior of
protection system components. TCD formalism is a super-set of
TFPG language as it contains an extended set of nodes and edges
to model the behavior of protection system components.

3.1 Modeling Formalism
A TCD model is a behavior augmented fault propagation graph
where behavior of protection system components is explicitly mod-
eled using TTA. Formally, a TCD model, G, can be defined as a
tuple,

G = (𝐹, 𝐷, 𝐸, 𝑀, 𝐸𝑇 , 𝐸𝑀, 𝑁𝐷, 𝑄, 𝑄0, Σ, Ψ𝑎𝑐𝑡 , Ψ𝑖𝑛𝑎, Φ, Ω, 𝑇 )

where
✠ F is a nonempty set of faults in the system. F is partitioned into

two disjoint sets, 𝐹𝑝ℎ𝑦 and 𝐹𝑐𝑦𝑏 , where the first set represents
the faults in the physical components and the later shows faults
associated with cyber or protection system.

✠ D is a nonempty set of observable discrepancies. It is a combi-
nation of two disjoint sets, 𝐷𝑝ℎ𝑦 and 𝐷𝑐𝑦𝑏 , where the set 𝐷𝑝ℎ𝑦
represents fault effects related to 𝐹𝑝ℎ𝑦 and𝐷𝑐𝑦𝑏 are discrepancies
related to cyber faults.

✠ E ⊆ 𝑉 ×𝑉 is the set of directional fault propagation edges con-
necting two nodes, where 𝑉 ⊆ 𝐹 ∪ 𝐷 such that 1 there are no
self loops, 2 a physical node, 𝑣𝑖 ∈ 𝐹𝑝ℎ𝑦 ∪𝐷𝑝ℎ𝑦 , is not connected
to cyber node, 𝑣 𝑗 ∈ 𝐹𝑐𝑦𝑏 ∪ 𝐷𝑐𝑦𝑏 and 3 fault nodes cannot be
destination node.

✠ M is a nonempty set of system modes. At each time instant, t,
the system can be in only one mode.

✠ ET : 𝐸 → R2≥0 is a map that associates every edge, 𝑒 ∈ 𝐸 a
time interval [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥 ] ∈ R2≥0, such that 𝑡𝑚𝑎𝑥 ≥ 𝑡𝑚𝑖𝑛 , where
𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 are the minimum and maximum time for fault
propagation to occur over the edge.

✠ EM : 𝐸 → {𝑀𝑞∪∅} is amap that associates every edge 𝑒 ∈ 𝐸 with
a set of modes, when the edge is active. For mode independent
edges i.e. active in all system modes, 𝐸𝑀 (𝑒) = ∅.

✠ ND : 𝐸 → {⊤,⊥} is a map that associates an edge, 𝑒 ∈ 𝐸

to ⊤(True) or ⊥(False), where ⊥ implies the propagation along
the edge, 𝑒 will happen, whereas ⊤ implies the propagation is
uncertain and can happen.

✠ Σ is a finite set of event labels. We categorize events into two
types, observable (Σ𝑜𝑏𝑠 ) and unobservable (Σ𝑢𝑛𝑜𝑏𝑠 ). Observable
events include alarms related to observable discrepancies, com-
mands or messages exchanged between cyber components etc.
Whereas, unobservable events are related to injection of faults
in the system.
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Table 1: Example TCD Model
TCD Element Example Model

Faults (𝐹 ) {𝐹1, 𝐹𝑚𝑖𝑠𝑠1, 𝐹𝑚𝑖𝑠𝑠2, 𝐹𝑠𝑡𝑢𝑐𝑘 }
Discrepancies (𝐷) {𝐷1, 𝐷2}
Edges (𝐸) {(𝐹1, 𝐷1), (𝐷1, 𝐷2) }
System modes (𝑀 ) {𝑚1,𝑚2}
Fault propagation duration (𝐸𝑇 ) 𝐸𝑇 (𝐹1, 𝐷1) = [2, 5], 𝐸𝑇 (𝐷1, 𝐷2) = [1, 3]
Edge-Mode Map (𝐸𝑀 ) 𝐸𝑀 (𝐹1, 𝐷1) =𝑚1, 𝐸𝑀 (𝐷1, 𝐷2) =𝑚1
Edge Uncertainty (𝑁𝐷) 𝑁𝐷 (𝐹1, 𝐷1) = ⊥, 𝑁𝐷 (𝐷1, 𝐷2) = ⊤
Events (Σ) {𝑑1, 𝑑2, 𝑑1′, 𝑑2′, 𝑓 𝑠𝑡𝑢𝑐𝑘, 𝑓𝑚𝑖𝑠𝑠1,

𝑓𝑚𝑖𝑠𝑠2, 𝑓𝑚1, 𝑐, 𝑠𝑐, 𝑟𝑒𝑠𝑒𝑡 }
Automaton locations (𝑄) {𝑆1, 𝑆2, 𝑆3, 𝑆4, 𝑆5, 𝑆6, 𝑆7, 𝑆8, 𝑆9, 𝑆10}
Intial Locations (𝑄0) {𝑆1, 𝑆5, 𝑆7}
Location-Mode map (Ω) Ω (𝑚1) : (𝑆1 ∨ 𝑆3) , Ω (𝑚2) : (𝑆2 ∨ 𝑆4)
Activation event map (Ψ) Ψ(𝐷1) : 𝑑1, Ψ(𝐷2) : 𝑑2,

Ψ(𝐹1) : 𝑓 1, Ψ(𝐹𝑚𝑖𝑠𝑠1) : 𝑓𝑚𝑖𝑠𝑠1,
Ψ(𝐹𝑚𝑖𝑠𝑠2) : 𝑓𝑚𝑖𝑠𝑠2,
Ψ(𝐹𝑠𝑡𝑢𝑐𝑘) : 𝑓𝑠𝑡𝑢𝑐𝑘

De-activation event map (Ψ) Ψ(𝐷1) : 𝑑1′, Ψ(𝐷2) : 𝑑2′
Timing constraints (Φ) {(𝑟 ) }
Transitions (𝑇 ) Illustrated in Figure 1

✠ Q is a finite set of locations associated with time triggered au-
tomata, and 𝑄0, is the initial location set.

✠ Ω : 𝑀 → 𝑓 (𝑄𝑛) is a map that relates a system mode𝑚 ∈ 𝑀

with a boolean function defined over locations 𝑞 ∈ 𝑄 . A boolean
function, 𝑓 : 𝑄𝑛 → {⊤, ⊥} can be viewed as a constraint on
the locations of cyber sub-system automata. At any time 𝑡1, a
system mode𝑚 represents the actual operating conditions if the
corresponding boolean constraint is satisfied by the locations of
cyber sub-system automata, i.e. Ω(𝑚)

��
𝑡=𝑡1

== ⊤.
✠ Ψ𝑎𝑐𝑡 : 𝐹 ∪ 𝐷 → Σ is a map that relates activation of nodes,

𝑣 ∈ 𝐹 ∪ 𝐷 , in TFPG sub-model with events labels, 𝜎 ∈ Σ, in TTA.
✠ Ψ𝑖𝑛𝑎 : 𝐹 ∪ 𝐷 → Σ is a map that relates de-activation of nodes,

𝑣 ∈ 𝐷 , in TFPG sub-model with events labels, 𝜎 ∈ Σ, in TTA1.
✠ Φ is a set of timing constraints, Φ = [𝑛], (𝑛) |𝑛 ∈ N+, where [𝑛]

denotes instantaneous constraints and (𝑛) represents periodic
constraints. The timing constraints specify a pattern of time
points at which the automaton checks for the presence of events.

✠ T ⊂ 𝑄 × Σ ×Φ× Σ𝑛 ×𝑄 is a finite set of transitions between any
two locations. Each transition of the time triggered automaton
is labeled with an event request, a timing constraint and output
event(s). For example the tuple, ( 𝑞1, 𝜎1, [𝑛], 𝜎2, 𝑞2 ) represents
a transition from location 𝑞1 ∈ 𝑄 to 𝑞2 ∈ 𝑄 where 𝜎1, 𝜎2 ∈ Σ are
input and output events respectively and [𝑛] is a instantaneous
time constraint. The transition is enabled only iff the event 𝜎1
is valid [see Definition 1 in §6] at time, 𝑡 = 𝑡1 + 𝑛, where 𝑡1
is the time when automaton entered location 𝑞1. A transition
is represented syntactically, as an edge between two locations
with a label of the form Event(time constraint)/Event or
Event[time constraint]/Event.
The TCD model of an arbitrary CPS is described in Table 1.

The example system consists of two protection devices (PD1,
PD2) that detect anomalous behavior in the underlying physi-
cal processes and an actuator (ACT) to mitigate or isolate the
fault effects. The TCD model consists of four fault nodes, 𝐹 =

{𝐹1, 𝐹𝑚𝑖𝑠𝑠1, 𝐹𝑚𝑖𝑠𝑠2, 𝐹𝑠𝑡𝑢𝑐𝑘}, where 𝐹1 is a physical fault and
𝐹𝑚𝑖𝑠𝑠1, 𝐹𝑚𝑖𝑠𝑠2, 𝐹𝑠𝑡𝑢𝑐𝑘 are cyber faults related to PD1, PD2 and
ACT respectively. The fault, 𝐹1 leads to an aberrant behavior in-
dicated by the observable discrepancies, 𝐷 = {𝐷1, 𝐷2}. The fault
effect from 𝐹1 manifests as 𝐷1 after the activation of 𝐹1, indicated

1Since the mappings, Ψ𝑎𝑐𝑡 and Ψ𝑖𝑛𝑎 are bijective in nature, we use Ψ−1𝑎𝑐𝑡 and Ψ−1𝑖𝑛𝑎 to
map events to nodes.
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Figure 1: Example TCD Model

by the event 𝑓 1 in system mode 𝑚1. The manifestation of 𝐷1 is
signaled by the event 𝑑1 that succeeds 𝑓 1 by a duration [2,5] as
highlighted by the markers associated with the edge between 𝐹1
and 𝐷1 in Figure 1(a). The system mode𝑚1 implies the location
of the actuator, ACT to be either 𝑆1 or 𝑆3. Under the same system
mode, the fault effect propagates from 𝐷1 to 𝐷2 in [1,3] units of
time, producing an event 𝑑2.

The TTA associated with PD1 consists of three locations with S5
being the initial location. The automaton models both nominal and
faulty operation of the protection device. A missed detection fault,
𝐹𝑚𝑖𝑠𝑠1 affects the operation, by forcing the automaton to skip the
detection of anomalous behavior indicated by the event𝑑1. While in
S5, the automaton checks for the presence of events 𝑑1 and 𝑓𝑚𝑖𝑠𝑠1
every 𝑟 units of time. The periodic checking of events is enforced by
the timing constraint associated with all outgoing transitions from
S5. If 𝑓𝑚𝑖𝑠𝑠1 is present then the automaton transitions to S7. On the
other hand, the presence of the event 𝑑1 causes the automaton to
jump to S6 and generates an actuation command, indicated by the
event 𝑐 . Similarly, in S7, the automaton checks for the presence of
the 𝑟𝑒𝑠𝑒𝑡 event that takes the automaton back to the initial location
as highlighted in Figure 1(c).

The TTA, ACT, consists of four locations, with S1 being the ini-
tial location. The automaton models the operation of an abstract
actuator that changes the state of the physical process after receiv-
ing commands from protection devices. The change in actuator
location, signaled by the event, 𝑠𝑐 leads to change in the system
mode affecting the fault propagation. The automaton also captures
the behavior of the actuator under the influence of the stuck fault,
𝐹𝑠𝑡𝑢𝑐𝑘 that forces an actuator to ignore commands from the pro-
tection devices. While in S1, the automaton periodically checks the
presence of events, 𝑐 or 𝑓 𝑠𝑡𝑢𝑐𝑘 . The event, 𝑓 𝑠𝑡𝑢𝑐𝑘 , indicates the
presence of the stuck fault. The presence of 𝑐 forces the actuator to
move to S2 and generate 𝑠𝑐 state change event. On the other hand,
the automaton transitions to S3 from S1 or to S4 from S2 if 𝑓 𝑠𝑡𝑢𝑐𝑘
is observed as shown in Figure 1(b).

3.2 Fault Propagation Semantics
In this section, we describe how fault effect propagates in a TCD
model G, while adhering to modal and temporal constraints. To
define these constraints, we use two maps N : 𝐼 × 𝐹 ∪ 𝐷 →
{𝑂𝑁,𝑂𝐹𝐹 } × R+, and E : 𝐼 × 𝐸 → {𝑂𝑁,𝑂𝐹𝐹 } × R+ to store
the state of node and edges, where 𝐼 is the indexed set of all times-
tamped events [see Definition 1 in §6 ], 𝐹 ∈ G is the set of fault
nodes, 𝐷 ∈ G is the set of discrepancies, 𝐸 ∈ G is the set of fault
propagation edges. The state of a node is deemed 𝑂𝑁 , if the fault
effect has reached the node, otherwise, remains𝑂𝐹𝐹 . Similarly, the
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state of an edge, 𝑒 ∈ 𝐸 is considered 𝑂𝑁 if𝑚 ∈ 𝐸𝑀 (𝑒), where𝑚
is the current system mode and 𝐸𝑀 is the edge mode map. These
maps also track the time at which the state of each node and edge
was changed. For improving the readability, we refer to the state
and time attributes associated with a node, 𝑛 after 𝑘𝑡ℎ event as
N𝑘 (𝑛) .State and N𝑘 (𝑛) .time respectively. Similarly for an edge
𝑒 , E𝑘 (𝑒).State and E𝑘 (𝑒).time denote state of edge after event 𝑘
and the time it was last changed.

Every fault effect propagation trace in a TCD model starts with
a node activation event, 𝑘 such that Ψ−1𝑎𝑐𝑡 (L(𝑘)) ∈ 𝐹 , where L
is the label associated with the time-stamped event 𝑘 ∈ 𝐼 [see
Definition 1 in §6]. If the associated fault node is cyber in nature,
i.e., Ψ−1𝑎𝑐𝑡 (L(𝑘)) ∈ 𝐹𝑐𝑦𝑏 then it can cause transition in one or more
protection system automaton. A transition in a protection device
can result into generation of synchronizing events that can cause
state transitions in other protection devices. These synchronizing
events can also act as actuation commands that change the location
of one ormore actuators. An event related to an actuation command,
𝑙 ∈ 𝐼 can alter the current system mode from𝑚𝑖 to𝑚 𝑗 such that
Ω(𝑚𝑖 ) → ⊥

��
𝑡=T(𝑙) ∧Ω(𝑚 𝑗 ) → ⊤

��
𝑡=T(𝑙) . The change in mode can

enable or disable an edge 𝑒 ∈ 𝐸 after 𝑙𝑡ℎ event as per Equations 1, 2
respectively.

E𝑙 (𝑒) ← (𝑂𝑁, T(𝑙)) | 𝑠.𝑡 . E𝑙−1 (𝑒) == 𝑂𝐹𝐹 ∧𝑚𝑙 ∈ 𝐸𝑀 (𝑒) (1)

E𝑙 (𝑒) ← (𝑂𝐹𝐹, T(𝑙)) | 𝑠.𝑡 . E𝑙−1 (𝑒) == 𝑂𝑁 ∧𝑚𝑙 ∉ 𝐸𝑀 (𝑒) (2)

On the other hand, if the initiating event is related to a physical
fault node i.e. Ψ−1𝑎𝑐𝑡 (L(𝑘)) ∈ 𝐹𝑝ℎ𝑦 then discrepancy node activation
events can take place. The fault effect can propagate from fault
node, 𝑛 = Ψ−1𝑎𝑐𝑡 (L(𝑘)) to a discrepancy node 𝑑 ∈ 𝐷 if the constraint
specified in Equation 3 holds true
N𝑘 (𝑛) .𝑆𝑡𝑎𝑡𝑒 == 𝑂𝑁 ∧ N𝑘 (𝑑) == 𝑂𝐹𝐹 ∧ (𝑛,𝑑) ∈ 𝐸 ∧ E𝑘 ( (𝑛,𝑑)) .𝑆𝑡𝑎𝑡𝑒 == 𝑂𝑁 (3)

Equation 3 ensures the fault effect will propagate to destination
node only if the edge between the source and destination nodes is
active and the state of the destination node is inactive. A discrepancy
activation event 𝑝 will2 happen in the interval defined in Equation 4

T(𝑝) ← [𝐸𝑇 (𝑛,𝑑) .𝑡𝑚𝑖𝑛 , 𝐸𝑇 (𝑛,𝑑) .𝑡𝑚𝑎𝑥 ] +
max(E𝑘 (𝑛,𝑑) .𝑡𝑖𝑚𝑒 , N𝑘 (𝑛) .𝑡𝑖𝑚𝑒)

(4)

The activation of discrepancy node can lead to further activation
of other discrepancy nodes as per the constraints mentioned in
Equations 3 and 4. It can also cause transitions in one or more
protection device automata that can generate new events leading to
more transitions in protection devices and actuators. As stated pre-
viously, actuator location change can alter the system mode, which
can disable existing active edges or enable new edges according to
Equations 1 and 2. Finally, the change in the state of edges can alter
the future activation of discrepancy nodes as per Equation 4.

3.3 Execution Semantics
In this section, we describe the execution semantics of a TCD
model using a discrete model of time, i.e., the time advances in
discrete steps. To define the execution rules, we translate TFPG sub
model and all TTA to a common model of computation, Timed Au-
tomata [5], such that a TCDmodel, G is transformed into a network

2If 𝑁𝐷 (𝑛,𝑑) is ⊥ then 𝑝 is guaranteed to be observed within the duration mentioned
in Equation 4 otherwise its uncertain
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Figure 2: Structure of translated TCD model and its interfacings

of timed automata, G𝑋 𝑟 , where each automaton is synchronized to
an external clock source, Ticker.

A network of timed automata is the parallel composition,
𝐴1 |𝐴2 ... |𝐴𝑛 of a set of timed automata,𝐴1 , 𝐴2 , ... , 𝐴𝑛 . Communi-
cation between the individual automaton occurs in two ways via 1
handshake synchronization using actions and 2 shared variables.
To model handshake synchronization between automata, an event
𝜎 ∈ Σ associated with a transition is replaced by an action pair
(𝜎?, 𝜎!) where 𝜎? implies event generation action and 𝜎! denotes
consumption action. The synchronization is achieved by forcing
generation and consumption actions to occur simultaneously i.e
transitions in different automata with action labeled 𝜎! and 𝜎? are
taken simultaneously. The second method uses two functions, reg-
ister_occurrence(event_id) and check_occurrence(event_id), where
the former explicitly stores the presence of an event while the
later checks for the presence of an event with a unique identifier,
𝑒𝑣𝑒𝑛𝑡_𝑖𝑑 [see Definition 1 in §6]. We classify handshake synchro-
nization as strict since it happens instantaneously while communi-
cation via shared variables as loose as the update can be relayed in
the next cycle depending upon the order of execution.

Apart from clock source, transformed TCD model, G𝑋 𝑟 requires
Injector automaton to inject external events such as fault activa-
tion events,Mode Calculator automaton to implement Ω and finally
nodeDe-activator automaton to signal the discrepancies that should
no longer be active in the current system mode. Figure 2 shows the
structure of the translated TCD model, G𝑋 𝑟 and its interfacing with
external automata. The external clock source uses strict communi-
cation mode to synchronize time with G𝑥𝑟 and injector automata.
A fault edge automaton uses handshake synchronization to convey
activation of discrepancies to other fault edge automata but relies
on shared variable to relay the same update to protection system.
Similarly, protection system automata (protection device and actu-
ator) uses loose communication mode to send and receive updates
among each other but synchronizes with De-activator and Mode
Calculator through handshake actions. The following sub-sections
describe the UPPAAL [6] timed automata templates for a fault edge,
clock source, mode calculator and de-activation automata along
with translation procedure for converting an arbitrary TTA model
to UPPAAL TA. An UPPAAL TA is an extended implementation
of TA model of computation that allows transition guards to be
defined on discrete variables as well as updating state variables
when a transition is taken from one location to other. The UPPAAL
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transition 𝑡𝑟 from location 𝑞𝑖 to 𝑞 𝑗 is a tuple, <𝑞𝑖 , 𝑔, 𝜎𝑘 !or𝜎𝑘?, 𝑟 , 𝑞 𝑗>
where 𝑔 is a boolean constraint defined over discrete variables and
(or) clock variables, 𝜎𝑘 ! or 𝜎𝑘? is the synchronization action (gen-
eration or consumption) and 𝑟 is the set of assignment statements
over discrete and (or) clock variables.
3.3.1 Fault Edge Automaton. : The TFPG sub-model is a specifica-
tion that put modal and timing constraints on the propagation of
fault effect. To actually simulate or verify the fault effect propaga-
tion, we represent each edge as an UPPAAL TA. Figure 3(a) shows
the timed automaton template of an arbitrary fault propagation
edge, 𝑒 ∈ 𝐸 with 𝐸𝑀 (𝑒) be the set of system modes in which the
edge is active and (𝑡_𝑚𝑎𝑥, 𝑡_𝑚𝑖𝑛) = 𝐸𝑇 (𝑒) is the duration of up-
per and lower bound on the propagation time. The corresponding
node activation and de-activation events for source and destina-
tion nodes are (𝑠𝑟𝑐_𝑎𝑐𝑡 , 𝑠𝑟𝑐_𝑖𝑛𝑎) and (𝑑𝑠𝑡_𝑎𝑐𝑡 , 𝑑𝑠𝑡_𝑖𝑛𝑎) respectively.
Other template arguments include a unique edge identifier, 𝑒𝑑𝑔𝑒_𝑖𝑑 ,
boolean parameter 𝑁𝐷 to capture uncertainty associated with the
edge and lastly, an event identifier associated with activation of
destination node, 𝑑𝑠𝑡_𝑖𝑑 .

The fault edge automaton consists of 11 locations with S3 being
the initial location, based on the assumption that the initial system
mode belongs to the set 𝐸𝑀 (𝑒), i.e., the edge is active and state of all
TFPG nodes is inactive3. The automaton can transition to locations
S7 or S4 or S1 depending upon the event observed as shown in
Figure 3(a). The transition, S3→ S7 is taken if the destination node
becomes active i.e. the event 𝑑𝑠𝑡_𝑎𝑐𝑡 is observed, whereas if source
node becomes active, the automaton moves to S4. The location
S1 is selected if the edge becomes inactive as a result of mode
change event,𝑚𝑜𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 . Whenever, the current system mode
is changed, Mode Calculator generates a𝑚𝑜𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 event and
every fault edge automaton responds to the event by calling a
function 𝑐ℎ𝑒𝑐𝑘_𝑚𝑜𝑑𝑒 (𝑒𝑑𝑔𝑒_𝑖𝑑) to ascertain if the edge remains
active in the new system mode. The function return true if the
current mode is listed in 𝐸𝑀 (𝑒) otherwise false.

Similarly rest of the locations in the automaton, except S9 and
S10 reacts to these events and transition to different locations as
highlighted in Figure 3(a). Table 2 summarises the physical meaning
of each location based on four conditions, 1 Is destination node
active?, 2 Is edge active?, 3 Is source node active? and 4 Has the
edge fired? We have assumed persistent faults in this study, which
implies a fault edge can fire only once. As a result of this assumption,
the locations S9 and S10 have no outgoing transitions. According
to Table 2, both locations represent the edge has fired. However,
S9 denotes the edge has fired while signalling the activation of
destination node, whereas S10 does not.

While in S4(S8), the automaton counts the number of ticks,
𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑙𝑜𝑐𝑘_𝑡𝑖𝑐𝑘 received from external clock source, 𝑇𝑖𝑐𝑘𝑒𝑟 us-
ing a bounded local integer variable, 𝑡𝑖𝑐𝑘_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 as shown in
Figure 3(a). While the value of 𝑡𝑖𝑐𝑘_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 is less than 𝑡_𝑚𝑖𝑛, the
automaton takes the self transition and increments the counter at
every tick. However, after 𝑡𝑖𝑐𝑘_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 becomes equal to 𝑡_𝑚𝑖𝑛

then the transition S4→ S4Temp(S8→ S10) also becomes enabled
and automaton randomly decides whether to take the self transition
or move to S4Temp(S10) at every clock tick. The self transition is

3If the assumption is not valid for system, then an appropriate location can be selected
based on Table 2

Table 2: Fault edge automaton location interpretation
Location Edge Fired? Dest. Active? Edge Active? Source Active?

S1 False False False False
S2 False False False True
S3 False False True False
S4 False False True True
S5 False True False False
S6 False True False True
S7 False True True False
S8 False True True True
S9 True X X X
S10 True X X X

feasible till the location invariant, 𝑡𝑖𝑐𝑘_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑡_𝑚𝑎𝑥 , associ-
ated with S4(S8) is valid, i.e., 𝑡𝑖𝑐𝑘_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑡_𝑚𝑎𝑥 −1. At the next
tick, the automaton has to take the transition to S4Temp(S10). The
location S4Temp is an intermediate committed location, that is used
to check certainty parameter before generating 𝑑𝑠𝑡_𝑎𝑐𝑡 event i.e
either transition to S9 or S10.

3.3.2 TTA to TA Translation. : The central idea of translating a
TTA to an UPPAAL TA is to add a set of intermediate locations to
allow the automaton to check the enabling condition of an outgoing
transition, at discrete time steps adhering to the timing constraints
associated with that transition. Algorithm 1 outlines sequence of
steps required to translate a location 𝑠 in TTA model to its equiva-
lent UPPAAL TA representation. The algorithm expects the label of
the location, 𝑠 along with a set of all outgoing transitions 𝑇 , from 𝑠 .
The output of the algorithm is a tuple, where the first element is a
set of locations, 𝑆 that contains the original location label, 𝑠 and 𝑝+1
intermediate locations where 𝑝 is the number of unique timing con-
straints associated with transitions in 𝑇 . We use tr.destination,
tr.constraint, tr.ip_event, tr.op_event to refer to destina-
tion node label, timing constraint, input synchronization event
label and output synchronization event label associated with a TTA
transition, 𝑡𝑟 ∈ 𝑇 . Similarly, k.type and k.value is used to allude
to type and value attributes of a timing constraint, 𝑘 . We also de-
fine a function Transition() to create an UPPAAL transition that
takes src location, guard condition, synchronization action, update
statements and destination location as input arguments.

During the initialization, the algorithm adds 𝑠 to 𝑆 and creates 𝑝
committed locations using function Location(). These committed
locations are stored in a map, 𝐿𝑜𝑐 that relates a timing constraint to
the location label. Apart from 𝐿𝑜𝑐 , two more maps are created,𝑉𝑎𝑟
to map timing constraints to tick counters (bounded integer vari-
ables) and𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑜𝑛𝑐𝑒 to relate instantaneous timing constraints
to boolean variables [Line 1]. After initializing, the algorithm cre-
ates an urgent location, 𝑡𝑒𝑚𝑝 and add two transitions between
𝑠 and 𝑡𝑒𝑚𝑝[Lines 3-5]. The transition, 𝑠 → 𝑡𝑒𝑚𝑝 is taken after
receiving clock synchronization event and all the tick counters
are incremented to capture the advancement of time. The other
transition, 𝑡𝑒𝑚𝑝 → 𝑠 has a guard condition which evaluates to
true if none of the timing constraints, associated with all outgoing
transitions from 𝑠 , are satisfied. A pair of transitions are added
between 𝑡𝑒𝑚𝑝 and every location in 𝐿𝑜𝑐 [Lines 8-16] such that the
transition from 𝑡𝑒𝑚𝑝 → 𝐿𝑜𝑐 [𝑘] implies the timing constraint 𝑘 has
satisfied whereas the transition in reverse direction captures the
un-satifiability of transition 𝑡𝑟 ∈ 𝑇 with constraint 𝑘 . Finally, |𝑇 |
transitions are added from 𝐿𝑜𝑐 [𝑡𝑟 ] to 𝑡𝑟 .𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛with guard con-
dition check_occurrence(tr.ip_event)) function call as shown
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Figure 3: UPPAAL Timed automaton templates for Fault Edge (a), Protection Device (b), Ticker (c), Injector (d), Mode Calculator (e) and De-
activator (f). Locations marked with double circles are initial locations

in Lines [19-25]. Figure 3(b) shows the translated UPPAAL TA asso-
ciated with TTA model of protection device (example TCD model)
described in previous section.

Algorithm 1: TTA to UPPAAL TA translation
Input: 𝑠 ,𝑇 Output: 𝑆 ,𝑇 ′

1 Initialize:𝑉𝑎𝑟 [𝑡𝑟 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ] = 0 ∀𝑡𝑟 ∈ 𝑇 , 𝑆 ← 𝑠

𝐿𝑜𝑐 [𝑘 ] = Location(”𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑”) ∀𝑘 ∈ 𝑉𝑎𝑟
𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑜𝑛𝑐𝑒 [𝑘 ] = ⊥ ∀𝑘 ∈ 𝑉𝑎𝑟 If 𝑘.𝑡𝑦𝑝𝑒 == ”𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠”

2 begin
3 𝑡𝑒𝑚𝑝 ← Location(”𝑢𝑟𝑔𝑒𝑛𝑡”)
4 𝑆 ← 𝑆 ∪ 𝑡𝑒𝑚𝑝
5 𝑇 ′ ← 𝑇 ′ ∪ Transition(𝑠,∅, 𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑙𝑜𝑐𝑘_𝑡𝑖𝑐𝑘!, [𝑉𝑎𝑟 [𝑘 ]+ = 1 ∀𝑘 ∈

𝑉𝑎𝑟 ], 𝑡𝑒𝑚𝑝)
6 𝑇 ← 𝑇 ′ ∪ Transition(𝑡𝑒𝑚𝑝,∧𝑉𝑎𝑟

𝑘
𝑣𝑎𝑟 [𝑘 ] ≤ 𝑘.𝑣𝑎𝑙𝑢𝑒,∅,∅, 𝑠)

7 foreach 𝑘 ∈ 𝑉𝑎𝑟 do
8 𝑆 ← 𝑆 ∪ 𝐿𝑜𝑐 [𝑘 ]
9 𝑇 ′ ← 𝑇 ′ ∪ Transition(𝑡𝑒𝑚𝑝,𝑉𝑎𝑟 [𝑘 ] > 𝑘.𝑣𝑎𝑙𝑢𝑒,∅,∅, 𝐿𝑜𝑐 [𝑘 ])

10 𝑐 ← ¬
( ∨𝑇

𝑡𝑟 𝑐ℎ𝑒𝑐𝑘_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑡𝑟 .𝑖𝑝_𝑒𝑣𝑒𝑛𝑡 ) If 𝑡𝑟 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 == 𝑘
)

11 𝑢 ← [𝑉𝑎𝑟 [𝑘 ] = 0]
12 if 𝑘.𝑡𝑦𝑝𝑒 == ”𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠” then
13 𝑐 ← 𝑐 ∪ 𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑜𝑛𝑐𝑒 [𝑘 ]
14 𝑢 ← 𝑢 ∪ 𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑜𝑛𝑐𝑒 [𝑘 ] = ⊤
15 end
16 𝑇 ′ ← 𝑇 ′ ∪ Transition(𝐿𝑜𝑐𝑘 [𝑘 ], 𝑐,∅,𝑢, 𝑡𝑒𝑚𝑝)
17 end
18 foreach 𝑡𝑟 ∈ 𝑇 do
19 𝜙 ← 𝑡𝑟 .𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡

20 𝑢 ← [𝑉𝑎𝑟 [𝑘 ] = 0∀𝑘 ∈ 𝑉𝑎𝑟 ] ∪ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑡𝑟 .𝑜𝑝_𝑒𝑣𝑒𝑛𝑡 )
21 𝑐 ← 𝑐ℎ𝑒𝑐𝑘_𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 (𝑡𝑟 .𝑖𝑝_𝑒𝑣𝑒𝑛𝑡 )
22 if 𝜙.𝑡𝑦𝑝𝑒 == ”𝐼𝑛𝑠𝑡𝑎𝑛𝑡𝑎𝑛𝑒𝑜𝑢𝑠” then
23 𝑐 ← 𝑐 ∪ ¬𝐶ℎ𝑒𝑐𝑘𝑒𝑑_𝑜𝑛𝑐𝑒 [𝜙 ]
24 end
25 𝑇 ′ ← 𝑇 ′ ∪ Transition(𝐿𝑜𝑐 [𝜙 ], 𝑡𝑟 .𝑜𝑝_𝑒𝑣𝑒𝑛𝑡 !, 𝑐,𝑢, 𝑡𝑟 .𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)
26 end
27 end

3.3.3 Clock Source Automaton. : Figure 3(c) shows an UPPAAL TA
of clock source,𝑇𝑖𝑐𝑘𝑒𝑟 with a single location S1. Ticker periodically
resets clock variable, 𝑡𝑖𝑚𝑒 , and broadcasts a synchronizing event,
𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑙𝑜𝑐𝑘_𝑡𝑖𝑐𝑘 . The automaton stays in the location till, 𝑡𝑖𝑚𝑒 <

1 and at 𝑡𝑖𝑚𝑒 = 1, the self transition is enabled and the location
invariant, 𝑡𝑖𝑚𝑒 ≤ 1 enforces the automaton to take the enabled
transition resulting in a broadcasting event, resetting clock variable
and increasing the clock counter,𝑔𝑙𝑜𝑏𝑎𝑙_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 by calling function
increment_global_counter().

3.3.4 Injector Automaton. : This automaton is responsible for in-
troducing external events such as fault node activation in G𝑋 𝑟 .
Figures 3(d) shows an Injector automaton that injects events in the
system at a given instant of time. The input parameters include refer-
ence to list of event labels and their associated identifiers, 𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 ,
𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡_𝑖𝑑𝑠 , size of the list, 𝑙𝑒𝑛, time of injection, 𝑖𝑛 𝑗𝑒𝑐𝑡_𝑡𝑖𝑚𝑒

and mode of the automaton,𝑚𝑜𝑑𝑒 . The automaton has two modes,
in first mode,𝑚𝑜𝑑𝑒 = ⊤, the automaton injects all events in the
list at specified time. However, in second mode, 𝑚𝑜𝑑𝑒 = ⊥, the
automaton randomly injects upto 𝑙𝑒𝑛 faults. The first mode is pre-
dominantly used for concrete simulation while the later is utilized
from symbolic simulation and model checking. As shown in Fig-
ure 3(d), the automaton consists of three locations with location S1
being the initial location. The Injector automaton stays in the initial
location up to 𝑒𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒-1 clock ticks. At 𝑒𝑣𝑒𝑛𝑡_𝑡𝑖𝑚𝑒𝑡ℎ clock tick,
the transition to committed location S1Temp is enabled and the
location invariant associated with S1 forces the automaton to jump
to S1Temp. While in S1Temp, the automaton iterates over the list,
𝑒𝑣𝑒𝑛𝑡_𝑙𝑖𝑠𝑡 and generates events depending on the parameter𝑚𝑜𝑑𝑒 .
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Figure 4: Two transmission line system

If the value of 𝑚𝑜𝑑𝑒 is ⊥, then in each iteration the automaton
can randomly take either of the two self transitions as shown in
Figure 3(d) and non-deterministically create events.
3.3.5 Mode Calculator Automaton. : It responds to the events re-
lated to change in the location of the actuators. Figure 3(e) shows
a mode calculator automaton consisting of two locations with, S1
being the initial location. When the automaton receives an actuator
state change event, (𝑠𝑐_𝑜𝑝𝑒𝑛_𝑃𝐴𝑘 , 𝑠𝑐_𝑐𝑙𝑜𝑠𝑒_𝑃𝐴𝑘) it moves from S1
to S1Temp. The automaton transitions back to S1 after updating
the system mode variable by calling method, update_mode() and
generating𝑚𝑜𝑑𝑒_𝑐ℎ𝑎𝑛𝑔𝑒 event. The function update_mode() iter-
ates over every possible system mode and selects the mode,𝑚 for
which Ω(𝑚) evaluates to true.

3.3.6 Discrepancy De-activator Automaton. : The protection de-
vices cause the actuators to change their location in response to
the observed fault effects. The resulting mode change as a result
of actuator location change can mask the fault effects leading to
de-activation of discrepancy nodes. Figure 3(f) shows a discrepancy
de-activator automaton consisting of two locations with S1 being
the initial location. The automaton jumps to committed location,
S1Temp after observing a mode change event. While in S1Temp,
the automaton iterates over every discrepancy node and generates
de-activation event, 𝜎 , if all fired fault edges with destination node,
Ψ−1
𝑖𝑛𝑎
(𝜎) have become in-active. The condition is checked by the

function call, check_disc_status() as shown in Figure 3(f).

4 EVALUATION
In this section, we evaluate the TCD based fault modeling approach
with the help of a case study from power transmission system. Fol-
lowing sub-sections describe 1 the physical and cyber components
in CPES, 2 the TCD fault model that captures effects of faults in
transmission lines and nominal as well as the faulty response of
protection systems, 3 simulation and verification results based
on the conversion of TCD model to the UPPAAL TA based on the
semantics discussed in previous section.

4.1 Case Study: Cyber Physical Energy System
The physical components in CPES such as buses, transmission
lines, transformers and generators are protected from faults (short-
circuit) with the help of relays and breakers. Figure 4 shows a
two transmission line network where two generators, G1, G2 are
supplying power to a load, L through lines TL1 and TL2 respectively.
The transmission lines are connected to generators and loads via
buses (B1, B2, B3) and protection assemblies (PA1, PA2, PA3, PA4).
A protection assembly is a collection of relays and breakers that
collectively detect and mitigate faults.

Modern relays such as SEL421 [14] offer a wide variety of pro-
tection functions. However, we are limiting the scope of this case
study to distance protection only as it is the primary protection

Table 3: TCD model: Two line transmission syste,
TCD Element Two line transmission system TCD model

Faults (𝐹 ) {𝐹𝑚1, 𝐹𝑚2, ...𝐹𝑚8, 𝐹𝑚𝑖𝑠𝑠𝑃𝐴𝑘 , 𝐹𝑠𝑡𝑢𝑐𝑘𝑃𝐴𝑘

∀𝑘 ∈ (1, 2, 3, 4) }
Discrepancies (𝐷) {𝐷1𝑃𝐴𝑘 , 𝐷2𝑃𝐴𝑘 , 𝐷3𝑃𝐴𝑘 ∀𝑘 ∈ (1 : 4) }
Edges (𝐸) Illustrated in Figure 5
System modes (𝑀 ) {𝑚0,𝑚1, ..,𝑚15}
Fault propagation (𝐸𝑇 ) [0.016, 0.032]∀𝑒 ∈ 𝐸
Edge-Mode Map (𝐸𝑀 ) Illustrated in Figure 5
Edge Uncertainty (𝑁𝐷) ⊥∀𝑒 ∈ 𝐸
Events (Σ) {𝑓𝑚1, ..., 𝑓𝑚8, 𝑑1𝑃𝐴𝑘 , 𝑑2𝑃𝐴𝑘 , 𝑑3𝑃𝐴𝑘 , 𝑑1′𝑃𝐴𝑘 ,

𝑑2′𝑃𝐴𝑘 , 𝑑3′𝑃𝐴𝑘 , 𝑓𝑚𝑖𝑠𝑠𝑃𝐴𝑘 , 𝑓 𝑠𝑡𝑢𝑐𝑘𝑃𝐴𝑘 ,

𝑠𝑐_𝑜𝑝𝑒𝑛𝑃𝐴𝑘 , 𝑠𝑐_𝑐𝑙𝑜𝑠𝑒𝑃𝐴𝑘 , 𝑐𝑚𝑑_𝑜𝑝𝑒𝑛𝑃𝐴𝑘 ,

𝑐𝑚𝑑_𝑐𝑙𝑜𝑠𝑒𝑃𝐴𝑘 ∀𝑘 ∈ (1 : 4) }
Automaton locations (𝑄) { (IDLE, MISSED, TRIPPED) × 12, (WAIT) × 8,

(OPEN, CLOSE, OPENING, CLOSING, STUCK_CLOSE,
STUCK_OPEN)× 4 }

Initial Locations (𝑄0) {(IDLE) × 12, (CLOSE)× 4}
Location-Mode map (Ω) Illustrated in Equations 5
Activation event map (Ψ𝑎𝑐𝑡 ) Ψ𝑎𝑐𝑡 (𝐷1𝑃𝐴𝑘 ) : 𝑑1𝑃𝐴𝑘 , Ψ𝑎𝑐𝑡 (𝐷2𝑃𝐴𝑘 ) : 𝑑2𝑃𝐴𝑘 ,

Ψ𝑎𝑐𝑡 (𝐷3𝑃𝐴𝑘 ) : 𝑑3𝑃𝐴𝑘 ,
Ψ𝑎𝑐𝑡 (𝐹𝑚𝑖𝑠𝑠𝑃𝐴𝑘 ) : 𝑓𝑚𝑖𝑠𝑠𝑃𝐴𝑘 ,
Ψ𝑎𝑐𝑡 (𝐹𝑠𝑡𝑢𝑐𝑘𝑃𝐴𝑘 ) : 𝑓 𝑠𝑡𝑢𝑐𝑘𝑃𝐴𝑘 ∀𝑘 ∈ (1 : 4) ,
Ψ𝑎𝑐𝑡 (𝐹𝑚𝑖) : 𝑓𝑚𝑖, ∀𝑖 ∈ (1 : 8)

De-activation event map (Ψ𝑖𝑛𝑎 ) Ψ𝑖𝑛𝑎 (𝐷1𝑃𝐴𝑘 ) : 𝑑1′𝑃𝐴𝑘 , Ψ𝑖𝑛𝑎 (𝐷2𝑃𝐴𝑘 ) : 𝑑2′𝑃𝐴𝑘 ,
Ψ𝑖𝑛𝑎 (𝐷3𝑃𝐴𝑘 ) : 𝑑3′𝑃𝐴𝑘 ∀𝑘 ∈ (1 : 4) ,

Timing constraints (Φ) {(𝑟𝑃𝐴𝑘 ), [𝑧2𝑤𝑡𝑃𝐴𝑘 ], [𝑧3𝑤𝑡𝑃𝐴𝑘 ], [𝑡𝑡𝑜𝑃𝐴𝑘 ],
[𝑡𝑡𝑐𝑃𝐴𝑘 ]∀𝑘 ∈ (1 : 4) }

Transitions (𝑇 ) Illustrated in Figure 5

function used for grounding faults in transmission lines. When
a fault is introduced in a transmission line, the current flowing
through the conductor increases and the voltage at the bus termi-
nals drops, causing a decrease in the apparent impedance measured
by the distance relay. A distance relay issues a trip command to the
breaker in the same assembly to clear the fault depending upon the
location of the fault. Since apparatus protection in power systems
is performed with a high degree of redundancy, a distance relay
consists of three relay elements that work in parallel and referred
to as zone 1, 2 and 3 elements. A zone 1 relay element detects a
fault when the measured impedance falls less the 0.8𝑧𝑙 , where 𝑧𝑙 is
the impedance of the primary transmission line connected directly
to the protection assembly. It’s an under-reaching element that
detects a fault in 80% of the line and sends the trip command im-
mediately. A zone 2 element is a time-delayed element, also called
an over-reaching element. It covers the primary transmission line
along with 50% of the neighboring transmission line such that the
impedance threshold is 𝑧𝑙 + 0.5𝑧𝑙 ′ where 𝑧𝑙 ′ is the impedance of the
neighboring line. Zone 2 relay element waits for a specified amount
of time, 𝑧2𝑤𝑡 before issuing the breaker trip command so that the
zone 1 element of the neighboring line is able to clear the fault
first. The delay is introduced to make sure the minimum number of
power system equipment are removed from the system. However,
if the fault is close to one end of the transmission line then the
relay on the other end will have to wait for 𝑧2𝑤𝑡 before issuing
a trip command. To reduce this wait time, a number of pilot trip
protocols are used, one such protocol is pilot under-reaching trip
transfer (PUTT) where zone 1 element of one relay sends a trip
transfer signal to the zone 2 relay element on the other end. After
receiving the PUTT signal, the relay skips the wait time and issues
a trip command to the associated breaker. Similar to zone 2 element,
the zone 3 element is a time delayed element (𝑧3𝑤𝑡 ) that covers the
primary and neighboring transmission lines completely such that
the impedance threshold becomes 𝑧𝑙 + 𝑧𝑙 ′ . Typical values of 𝑧2𝑤𝑡
and 𝑧3𝑤𝑡 are (0.1-0.25) and (1-2) seconds respectively [14].
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Figure 5: TFPG fault propagation edges (a) and TTA templates for protection system: zone 1 element(b), zone 2 element (c), zone 3 element(d),
breaker (e)

4.2 Fault Models
Based on the behavior and redundant arrangement of distance re-
lays, a signature of a fault in the transmission line can be created
in terms of the relay responses as described in [10]. A transmis-
sion line can be divided into sections such that fault anywhere
in a section produces same response from all protection assem-
blies as shown in [9]. For instance, fault anywhere in the left-most
section of transmission line 𝑇𝐿1, labeled as 𝐹𝑚1 causes (zone 1,
2, 3), (zone 2, 3) and (zone 3) elements associated with protection
assemblies 𝑃𝐴1, 𝑃𝐴2 and 𝑃𝐴4 to detect the reduction in impedance.
Thus, a TFPG graph can be created where fault nodes (𝐹𝑚1, 𝐹𝑚2,
..., 𝐹𝑚8) are related to faults in transmission lines and the discrep-
ancies (𝐷1𝑃𝐴1, 𝐷2𝑃𝐴1, 𝐷3𝑃𝐴1, ..., 𝐷1𝑃𝐴4, 𝐷2𝑃𝐴4, 𝐷3𝑃𝐴4) signify
reduction in impedance as shown in Figure 5(a). There are three
discrepancies associated with a protection relay, 𝑃𝐴𝑘 , 1 𝐷1𝑃𝐴𝑘
implies the apparent impedance measured by the relay is less than
0.8𝑧𝑙 and every element of the relay detects it, 2 𝐷2𝑃𝐴𝑘 signifies
the impedance is greater than 0.8𝑧𝑙 but less than 𝑧𝑙 + 0.5𝑧𝑙 ′ such
that zone 2 and 3 elements detect it and 3 𝐷3𝑃𝐴𝑘 denotes the
impedance is between 𝑧𝑙 + (0.5𝑧𝑙 ′, 𝑧𝑙 ′) such that only zone 3 ele-
ment detects it. The propagation time for each edge is in the range
[0.016 - 0.032] secs [14] and the mode condition depends upon the
state of the breakers such that there exists a path for power to flow
between the location of fault and generators. For instance, in order
for relay elements in 𝑃𝐴2 to detect fault conditions due to 𝐹𝑚1, the
breakers, 𝑃𝐴2_𝑏𝑟 , 𝑃𝐴3_𝑏𝑟 , 𝑃𝐴4_𝑏𝑟 must be closed. We identify 16
system modes, (m0-m15) based on combinations of breaker states
(open or close) given by Equations 5.

Ω (𝑚0) =
4∧

𝑖=1

𝑃𝐴𝑖_𝑏𝑟︷                                  ︸︸                                  ︷
(𝐶𝐿𝑂𝑆𝐸 ∨ 𝑆𝑇𝑈𝐶𝐾_𝐶𝐿𝑂𝑆𝐸) Ω (𝑚15) =

4∧
𝑖=1

𝑃𝐴𝑖_𝑏𝑟︷                                ︸︸                                ︷
(𝑂𝑃𝐸𝑁 ∨ 𝑆𝑇𝑈𝐶𝐾_𝑂𝑃𝐸𝑁 )

(5)

The complete TCD model for two transmission line system is
illustrated in Table 3. Figure 5(b) shows TTA template of a zone 1
relay element that consists of three locations with IDLE being the
initial location. While in IDLE, the automaton periodically checks

for 𝑓𝑚𝑖𝑠𝑠𝑃𝐴𝑘 and 𝑑1𝑃𝐴𝑘 events . These events are related to the
activation of 𝐹𝑚𝑖𝑠𝑠𝑃𝐴𝑘 and𝐷1𝑃𝐴𝑘 nodes respectively. If the missed
detection fault is present, then the automaton transitions to MISSED.
On the other hand, if reduction in impedance is detected, then
the automaton moves to TRIPPED and generates a pilot trip event,
𝑡𝑟𝑖𝑝 and actuation command, 𝑐𝑚𝑑_𝑜𝑝𝑒𝑛𝑃𝐴𝑘 for breaker, 𝑃𝐴𝑘_𝑏𝑟 .
Figure 5(c) shows the TTA template for a zone 2 relay element
with an additional location, WAIT. While in initial location, IDLE,
the automaton checks for events related to missed detection fault,
𝑓𝑚𝑖𝑠𝑠𝑃𝐴𝑘 and reduction in impedance, (𝑑1𝑃𝐴𝑘 or 𝑑2𝑃𝐴𝑘 ). If discrep-
ancy activation event is observed, the automaton jumps to WAIT.
In WAIT, the automaton waits for 𝑑𝑒𝑙𝑎𝑦 number of clock ticks and
then jumps to TRIPPED while generating event 𝑐𝑚𝑑_𝑜𝑝𝑒𝑛𝑃𝐴𝑘 . The
wait time is skipped if a 𝑡𝑟𝑖𝑝 event is observed from a protection
assembly connected to the other end, or the zone 1 element of the
same assembly had issued the 𝑐𝑚𝑑_𝑜𝑝𝑒𝑛𝑃𝐴𝑘 event before the wait
period expires. In case, the fault is cleared by some other protection
assembly, a discrepancy de-activation event, 𝑑1′𝑃𝐴𝑘 or 𝑑2′𝑃𝐴𝑘 can
force the automaton back to IDLE . The zone 3 element automaton is
similar to zone 2 with two major differences, 1 zone 3 automaton
responds to three discrepancy activation and de-activation events,
(𝑑𝑖𝑃𝐴𝑘 ,𝑑𝑖 ′𝑃𝐴𝑘 )∀𝑖 ∈ {1, 2, 3}, 2 zone 3 wait time cannot be skipped
by pilot trips as shown in Figure 5(d).

4.3 Simulation Results
Tables 4, 5 and 6 show the trace of three simulation scenarios. In
the first scenario, a physical fault is introduced in the leftmost
section of the transmission line, 𝑇𝐿1 by injecting an external event
through Injector automaton, 𝑓𝑚1_𝑖𝑛 𝑗𝑒𝑐𝑡𝑜𝑟 at time t = 1. The zone
1, 2 and 3 elements of protection assembly, 𝑃𝐴1, followed by zone
2, 3 elements of 𝑃𝐴2 and zone 3 element of 𝑃𝐴4 detect the fault.
The zone 1 element of 𝑃𝐴1 sends a trip command to the breaker,
𝑃𝐴1_𝑏𝑟 and sends a PUTT signal to 𝑃𝐴2. The zone 2 element of
𝑃𝐴2 picks up the trip signal and commands the breaker 𝑃𝐴2_𝑏𝑟 to
open, thereby shortening the zone 2 wait time of 4 clock ticks. After
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both breakers have cleared the fault, the system mode changes
which leads to the de-activation of all discrepancy nodes. The de-
activation of discrepancy 𝐷3𝑃𝐴4, forces zone 3 element of 𝑃𝐴4 to
return back to IDLE as illustrated in Table 4. The second scenario
extends the first one by introducing a missed detection fault in all
relay elements associated with 𝑃𝐴2 at t = 1 with the help of an
additional injector automaton,𝑚𝑖𝑠𝑠𝑒𝑑_𝑓 𝑎𝑢𝑙𝑡_𝑖𝑛 𝑗𝑒𝑐𝑡𝑜𝑟 . The relay
elements in 𝑃𝐴1 detect the fault and zone 1 element instructs the
breaker to trip. However, relay elements in 𝑃𝐴2 do not detect the
fault, causing the backup protection assembly 𝑃𝐴4, to issue an open
command to the breaker 𝑃𝐴4_𝑏𝑟 after waiting for 5 clock ticks as
summarized in Table 5. The third scenario also extends the first one
by injecting a stuck fault in the breaker associated with 𝑃𝐴2 at t=1.
In this scenario, protection relays in 𝑃𝐴1 and 𝑃𝐴2 behaves exactly
the same as in first scenario. However, the breaker 𝑃𝐴2_𝑏𝑟 fails
to open because of the stuck fault, causing the backup protection
assembly 𝑃𝐴4, to issue an open command to the breaker 𝑃𝐴4_𝑏𝑟
as summarized in Table 6. To reduce the length of traces, the value
of periodic timing constraint, 𝑟 , and zone wait times, 𝑧2𝑤𝑡 , 𝑧3𝑤𝑡
are assumed to be 0, 4, 5 respectively. Moreover, tables 4, 5 and 6
show partial traces of the scenarios, and do not list the intermediate
locations different automaton go through. The UPPAAL model and
the complete simulation trace for above mentioned scenarios can
be downloaded from https://github.com/chhokrad/sam2020.git.

4.4 Verification Results
We verify the translated TCD model, G𝑋 𝑟 , using UPPAAL’s sym-
bolic model checker to guarantee the correctness of the underlying
TCD model, G. The safety of the system can be evaluated against
a list of properties encoded in Real-Time Computation Tree Logic
(RCTL). Table 7 lists the description of these properties and their
corresponding RCTL formulae. We used the same system parame-
ters as described in previous section except 1 added a reference
real valued clock variable, 𝑎𝑏𝑠_𝑡𝑖𝑚𝑒 to verify the RCTL formulae
w.r.t absolute time and 2 changed the mode of stuck and missed
fault injectors to random, to check the properties in different CPS
fault configurations.

5 CONCLUSION
In this paper, we presented a new qualitative fault modeling tech-
nique, TCD, that utilizes TFPG to model fault propagation in physi-
cal sub-system and TTA to capture the behavior of discrete protec-
tion devices. We also described the fault propagation and execution
semantics of a TCD model by translating it to a network of UP-
PAAL TA. In the end, with the help of a case study from CPES,
we illustrated the procedure to model, simulate and verify a fault
model. In the current work, we restricted the TFPG sub-model to
include only one kind of discrepancy, i.e. observable OR type dis-
crepancy, which can be activated if at-least one of the parent nodes
is active. However, in future work, we would like to include, AND
type discrepancies that can be activated if all the parent nodes are
active.

6 APPENDICES
Definition 1. A timestamped event, 𝑘 is a tuple, (𝜎, 𝑡1) such that 𝜎 ∈ Σ
is the event label and 𝑡1 ∈ R+ is the time instant at which the event occurs.

We define two functions, T : 𝐼 → R+, L : 𝐼 → Σ, that relates an event
𝑘 ∈ 𝐼 to its time of occurrence and event label. The event 𝑘 is considered
to be valid at time 𝑡 if 𝑡 − T(𝑘) ≤ 𝜖 , where 𝜖 is a system parameter and
depends upon the different timing constraints used in the TCD specification.
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Table 4: Simulation trace for scenario 1: Only physical fault
global_ system fm1_ fm1_d1_ fm1_d2_ fm1_d3_ pa1_z1_ pa1_z2_ pa1_z3_ pa2_z2_ pa2_z3_ pa3_z3_ pa1_br pa2_br2 pa4_br
counter mode injector pa1_edge pa2_edge pa4_edge element element element element element element

0 m0 S1 S3 S3 S3 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE CLOSE CLOSE
1 m0 S2 S4 S4 S4 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE CLOSE CLOSE
2 m0 S2 S4 S4 S4 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE CLOSE CLOSE
3 m0 S2 S9 S9 S9 TRIPPED WAIT WAIT WAIT WAIT WAIT OPENING CLOSE CLOSE
4 m0 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPENING OPENING CLOSE
5 m8 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPEN OPENING CLOSE
6 m14 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED IDLE OPEN OPEN CLOSE

Table 5: Simulation trace for scenario 2: Physical and missed detection faults
global_ system fm1_ missed_ fm1_d1_ fm1_d2_ fm1_d3_ pa1_z1_ pa1_z2_ pa1_z3_ pa2_z2_ pa2_z3_ pa3_z3_ pa1_br pa2_br2 pa4_br
counter mode injector fault_ pa1_edge pa2_edge pa4_edge element element element element element element

injector

0 m0 S1 S1 S3 S3 S3 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE CLOSE CLOSE
1 m0 S2 S2 S4 S4 S4 IDLE IDLE IDLE MISSED MISSED IDLE CLOSE CLOSE CLOSE
2 m0 S2 S2 S4 S4 S4 IDLE IDLE IDLE MISSED MISSED IDLE CLOSE CLOSE CLOSE
3 m0 S2 S2 S9 S9 S9 TRIPPED WAIT WAIT MISSED MISSED WAIT OPENING CLOSE CLOSE
4 m0 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED WAIT OPENING CLOSE CLOSE
5 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED WAIT OPEN CLOSE CLOSE
6 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED WAIT OPEN CLOSE CLOSE
7 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED WAIT OPEN CLOSE CLOSE
8 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED WAIT OPEN CLOSE CLOSE
9 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED TRIPPED OPEN CLOSE OPENING
10 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED TRIPPED OPEN CLOSE OPENING
11 m9 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED MISSED MISSED TRIPPED OPEN CLOSE OPEN

Table 6: Simulation trace for scenario 3: Physical and breaker stuck faults
global_ system fm1_ stuck_ fm1_d1 fm1_d2 fm1_d3 pa1_z1_ pa1_z2_ pa1_z3_ pa2_z2_ pa2_z3_ pa3_z3_ pa1_br pa2_br2 pa4_br
counter mode injector fault_ _pa1_ _pa2_ _pa4_ element element element element element element

injector edge edge edge

0 m0 S1 S1 S3 S3 S3 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE CLOSE CLOSE
1 m0 S2 S2 S4 S4 S4 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE STUCK_CLOSE CLOSE
2 m0 S2 S2 S4 S4 S4 IDLE IDLE IDLE IDLE IDLE IDLE CLOSE STUCK_CLOSE CLOSE
3 m0 S2 S2 S9 S9 S9 TRIPPED WAIT WAIT WAIT WAIT WAIT OPENING STUCK_CLOSE CLOSE
4 m0 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPENING STUCK_CLOSE CLOSE
5 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPEN STUCK_CLOSE CLOSE
6 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPEN STUCK_CLOSE CLOSE
7 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPEN STUCK_CLOSE CLOSE
8 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED WAIT OPEN STUCK_CLOSE CLOSE
9 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED OPEN STUCK_CLOSE OPENING
10 m8 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED OPEN STUCK_CLOSE OPENING
11 m9 S2 S2 S9 S9 S9 TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED TRIPPED OPEN STUCK_CLOSE OPEN

Table 7: Real-Time Computation Tree Logic Properties
ID Property Description

1 A[] not deadlock This property ensures there are no deadlocks in the system and time always evolve.
2 A[] (time <=1 and time >= 0) This property ensures that the clock variable, time, is bounded between [0,1].
3 A[] abs_time > fm1_injector.inject_time imply fm1_injector.S2 and

f_physical_state[0]
This property ensures that the physical fault, FM1, is injected at appropriate time, where f_physical_state
is boolean array that is used for storing the state of physical fault node, where index 0 implies FM1.

4 A[] (abs_time > (fm1_injector.inject_time + fm1_d1_pa1.t_max) imply
fm1_d1_pa1.S9)

This property ensures that the edge between FM1 and discrepancy D1PA1 is fired by
(fm1_injector.inject_time + fm1_d1_pa1.t_max) ticks.

5 A[] (abs_time > (fm1_injector.inject_time + fm1_d2_pa2.t_max) imply
fm1_d2_pa2.S9)

This property ensures that the edge between FM1 and discrepancy D2PA2 is fired by
(fm1_injector.inject_time + fm1_d2_pa2.t_max) ticks.

6 A[] (abs_time > (fm1_injector.inject_time + fm1_d3_pa4.t_max) imply
fm1_d3_pa4.S9)

This property ensures that the edge between FM1 and discrepancy D3PA4 is fired by
(fm1_injector.inject_time + fm1_d3_pa4.t_max) ticks.

7 A[] (abs_time > (fm1_injector.inject_time + fm1_d1_pa1.t_max ) and not
f_missed_state[0] imply pa1_z1_element.TRIPPED)

This property ensures that if missed detection fault is not present in protection assembly, PA1, then
its zone 1 element will trip by fm1_injector.inject_time + fm1_d1_pa1.t_max ticks. Array,
f_missed_state is used to store the state of missed detection faults, where indices 0,1,2 implies pro-
tection assemblies PA1, PA2, and PA4 respectively.

8 A[] (abs_time > (fm1_injector.inject_time + fm1_d2.t_max +
pa2_z2_element.delay) and f_missed_state[1] imply pa2_z2_element.TRIPPED)

This property ensures that if missed detection fault is absent in protection assembly, PA2, then its zone
2 element will trip by fm1_injector.inject_time + fm1_d2.t_max + pa2_z2_element.delay ticks.

9 A[] (abs_time > (fm1_injector.inject_time + fm1_d3.t_max +
pa4_z3_element.delay) and not (f_missed_state[2] or f_stuck_state[2]) and
(f_missed_state[1] or f_stuck_state[1]) imply pa4_z3_element.TRIPPED)

This property ensures that if missed detection fault is absent protection assembly, PA4 and cyber fault
is present in PA2 (either missed detection in relay or stuck fault in breaker), then zone 3 element of
PA4 will trip by fm1_injector.inject_time + fm1_d3.t_max + pa4_z3_element.delay ticks. Array,
f_stuck_state is used to store the state of stuck faults, where indices 0,1,2 implies protection assemblies
PA1, PA2, and PA4 respectively.

10 A[] (abs_time > (fm1_injector.inject_time + fm1_d1.t_max +
pa2_z2_element.delay) and not (f_missed_state[0] or f_stuck_state[0]
or f_missed_state[1] or f_stuck_state[1] or f_missed_state[3] or
f_stuck_state[3])) imply not (discrepancy_state[0] or discrepancy_state[1]
or discrepancy_state[2]))

This property ensures that if no cyber fault is present the all discrepancies should stop signal-
ing by fm1_injector.inject_time + fm1_d1.t_max + pa2_z2_element.delay ticks. Array
discrepancy_state is used to store the state of discrepancy nodes, where indices 0,1,2 signifies dis-
crepancies D1𝑃𝐴1 , D2𝑃𝐴2 and D3𝑃𝐴4 respectively
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