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Due to the high upfront cost of electric vehicles, many public transit agencies can afford only mixed fleets of
internal-combustion and electric vehicles. Optimizing the operation of such mixed fleets is challenging because
it requires accurate trip-level predictions of electricity and fuel use as well as efficient algorithms for assigning
vehicles to transit routes. We present a novel framework for the data-driven prediction of trip-level energy use
for mixed-vehicle transit fleets and for the optimization of vehicle assignments, which we evaluate using data
collected from the bus fleet of CARTA, the public transit agency of Chattanooga, TN. We first introduce a data
collection, storage, and processing framework for system-level and high-frequency vehicle-level transit data,
including domain-specific data cleansing methods. We train and evaluate machine learning models for energy
prediction, demonstrating that deep neural networks attain the highest accuracy. Based on these predictions,
we formulate the problem of minimizing energy use through assigning vehicles to fixed-route transit trips. We
propose an optimal integer program as well as efficient heuristic and meta-heuristic algorithms, demonstrating
the scalability and performance of these algorithms numerically using the transit network of CARTA.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; • Computing
methodologies → Machine learning; • Information systems → Data management systems; • Applied
computing→ Transportation.
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1 INTRODUCTION
Transportation accounts for 28% of the total energy use in the U.S. [13], and as such, it is responsible
for immense environmental impact, including urban air pollution and greenhouse gas emissions,
and may pose a severe threat to energy security. Switching from personal vehicles to public transit
systems can significantly reduce energy use and environmental impact. However, even public
transit systems require substantial amounts of energy; for example, public bus transit services in
the U.S. are responsible for at least 19.7 million metric tons of CO2 emission annually [35].

Electric vehicles (EVs) can have much lower environmental impact during operation than com-
parable internal combustion engine vehicles (ICEVs), especially in urban areas. Unfortunately, EVs
are also much more expensive than ICEVs (typically, diesel transit buses cost less than $500K, while
electric ones cost more than $700K, or close to around $1M with charging infrastructure [36]).
As a result, many public transit agencies can afford only mixed fleets of transit vehicles, which
may consist of EVs, hybrids (HEVs), and ICEVs. Transit agencies that operate such mixed fleets of
vehicles face a challenging optimization problem: these agencies need to decide which vehicles are
assigned to serving which transit trips. Since the advantage of EVs over ICEVs varies depending on
the route and time of day (e.g., the advantage of EVs is higher in slower traffic with frequent stops,
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and lower on highways), the assignment can have a significant effect on energy use and, hence,
environmental impact. This optimization problem is computationally challenging as the number
of possible assignments grows exponentially with the number of transit trips, and it cannot be
formulated as a simple matching because of the intricate constraints due to trip schedules and
vehicle travel times.

At the crux of this operational optimization is the problem of accurately predicting the electricity
and fuel consumption of transit vehicles. Such predictions must be contextualized with a variety of
factors, including the type of vehicle, traffic and weather conditions, road gradient, and type of
road (e.g., highway vs. residential area) since these factors can have significant impact on energy
use. Clearly, handling all of these factors using model-driven approaches, which attempt to build
detailed physical models of vehicles, is very challenging.

Recent advances in sensor-based technologies, data analytics, and machine learning have enabled
remedying this situation by building data-driven predictors of route-level energy use. However,
to the best of our knowledge, there exists no framework that would integrate all relevant data
into a route-level prediction model for public transit. Such a framework needs to address many
challenges: high volume of unstructured and irregular data must be stored efficiently, allowing
easy retrieval in subsequent steps; noisy data (e.g., GPS based locations) must first be cleansed (e.g.,
corrected or imputed based on other data sources); heterogeneous data (recorded at different rates
with different precision in different formats) must be collated into samples that can be fed into
training machine-learning models; etc.
A large stream of literature aims to efficiently predict energy consumption for vehicles from

various perspectives. A few papers compare different predictive models for energy consumption. For
example, Cauwer et al. [12] use a cascade of artificial neural network and multiple linear regression
models as a data-driven energy-consumption prediction method. Their study includes data from
only EVs, and their dataset does not consider traffic features. Wickramanayake and Bandara [45]
compare three different methods for predicting the fuel consumption of a bus. However, their study
lacks significant features, such as road information, traffic, weather, etc. Section 9.1 provides an
overview of several relevant studies to give insight into the state-of-the-art research in the field
of energy consumption prediction for vehicles. Unlike most prior energy consumption prediction
models, our approach includes predictive models for both EVs and ICEVs. Further, it incorporates
essential parameters such as weather conditions, traffic data, etc. Crucially, we do not incorporate
traffic only as a proxy feature (e.g., day of week or time of day), but we incorporate it using
parameters that represent actual traffic conditions as speed profile and road congestion.
Prior research efforts on energy-optimization for transit agencies mostly focus on optimally

assigning buses to transit trips by altering existing transit schedules. For example, Wang et al. [43]
consider a scheduling problem for transit agencies that operate only EVs, and they propose to
assign buses to transit trips by modifying existing transit schedules to reduce energy consumption.
Unfortunately, this is often infeasible in practice since it reduces the service level of the transit
network for passengers. In our approach, we consider transit agencies that operate mixed-fleets of
EVs and ICEVs based on a fixed schedule. Further, prior research efforts use a variety of data to
estimate the energy consumption of EVs and ICEVs when assinging buses to transit trips. Santos et
al. [39] use fixed costs, emission and consumption rates for different types of vehicles, while Paul
et al. [37] assume that energy costs are fixed per unit distance, without considering any spatial or
temporal features. Unlike these prior research efforts, we derive accurate energy estimates from
our energy predictors using a variety of features, including high-resolution route information (i.e.,
location traces), traffic, elevation, and weather.
Most prior research efforts focus on minimizing the energy costs or environmental impact of

transit vehicles under the assumption that energy consumption is proportional to the distance
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traveled by an EV or ICEV during a trip. However, in practice, energy consumption can vary
significantly due to factors such as weather, traffic, and elevation changes. Therefore, optimization
based on a fixed rate of energy consumption per unit distance will yield suboptimal solutions. In
contrast, we propose a complete framework for the data-driven prediction and optimization of the
energy use of transit vehicles. First, we estimate trip-level energy consumption values based on
machine-learning prediction models, which consider various factors such as weather, elevation, and
traffic. Then, we use the energy consumption estimates as inputs to our optimization algorithms
and assign buses to transit trips. Since our energy estimates are very accurate at the trip-level, the
solutions found by our optimization algorithms will be feasible and near optimal in practice.

Contributions: In this paper1, we present a novel framework for the data-driven offline predic-
tion of route-level energy use for mixed-vehicle transit fleets and for the optimal assignment of
vehicles to fixed-route transit trips, which we evaluate using data collected from the bus fleet of
the Chattanooga Area Regional Transportation Authority (CARTA), the public transit authority of
Chattanooga, TN.
• We collect and combine vehicle telemetry data, elevation and street-level maps, weather data,
and traffic data. Our dataset is publicly available at https://smarttransit.ai/energy.html
• We present a cloud-centric data collection and storage framework for high-velocity spatio-
temporal smart-city data. Our modular architecture is centered around a topic-based, distributed
publish-subscribe (pub-sub) layer with easily extendable, application-specific structured views.
• We present a framework and novel algorithms for cleaning and integrating time series data
from multiple sources into sets of samples with fixed-dimensional feature space, including a
machine-learning based approach for accurately mapping noisy locations to road segments.
• We use this dataset to train machine-learning models for energy-use prediction (deep neural
networks, linear regression, and decisions trees) and study their performance, focusing on the
impact of including or omitting certain data sources.
• We formulate the problem of minimizing energy costs by assigning a mixed fleet of vehicles to
fixed-route transit trips, considering constraints such as route schedules and vehicle travel times.
• We introduce an integer program for finding an optimal solution to this problem as well as
randomized heuristic and meta-heuristic algorithms for finding near-optimal solutions efficiently.
We demonstrate the efficiency of the proposed algorithms using numerical evaluation based on
the real-world transit routes and schedules of CARTA.
Organization: The remainder of this paper is organized as follows. In Section 2, we describe

our data sources, data collection methods, and data storage architecture. In Section 3, we introduce
our data cleansing and integration framework. In Section 4, we propose machine-learning based
prediction models. In Section 5, we evaluate the prediction models using real-world data. In
Section 6, we formulate the problem of assigning vehicles to fixed-route transit trips. In Section 7,
we introduce an integer program, randomized greedy heuristics, and a genetic algorithm for solving
the optimization problem. In Section 8, we present numerical results on the proposed optimization
algorithms. In Section 9, we discuss related work on predicting energy use, mapping noisy locations,
and optimizing energy costs. Finally, in Section 10, we provide concluding remarks.

2 DATA COLLECTION AND STORAGE FRAMEWORK
We first provide an overview of the data sources that we use in our study (Section 2.1) and then
describe the architecture of our data storage framework (Section 2.2). Table 1 provides an overview
of our data sources.

1This paper is a significant extension of our previously published conference paper [8].
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Table 1. Overview of Datasets

Data Source Frequency Scope Features

Diesel Vehicles ViriCiti & 1 Hz 3 vehicles for 244 days GPS location, fuel-level, fuel rate,
(2014 Gillig Phantom CARTA (veh. IDs: 147, 149, 150; odometer
diesel buses) 2019-8-1 to 2020-3-31)
Electric Vehicles ViriCiti & 1 Hz 3 vehicles for 244 days GPS location, charging status,
(2016 BYD K9S 35-foot CARTA (veh. IDs: 751, 752, 753; battery current, battery voltage,
battery-electric buses) 2019-8-1 to 2020-3-31) battery state of charge, odometer
Traffic HERE [20] 1 Hz TMC segments for major TMC ID, confidence of reading,

roads in Chattanooga unconstrained speed, free-flow
speed, jam factor

Weather DarkSky [11] 0.1 Hz Chattanooga region location, temperature, wind
speed, precipitation, humidity,
visibility, apparent temperature

Elevation TN GIC [41] static Chattanooga region location, elevation

2.1 Data Sources
2.1.1 Vehicle Data. To collect data from CARTA’s fleet of vehicles, we partner with ViriCiti, a
company that offers sensor devices and an online platform to support transit operators with real-
time insight into their fleets. ViriCiti has installed sensors on CARTA’s mixed-fleet of 3 electric, 41
diesel, and 6 hybrid buses, and it has been collecting data continuously at 1-second (or shorter)
intervals since installation. For this study, we use data collected between August 2019 and March
2020 from 3 electric and 3 diesel vehicles as shown in Table 1. All electric buses are BYD K9S
battery-electric transit vehicles, while the diesel buses are 2014 Gillig Phantom series vehicles with
Cummins diesel engines.
For each vehicle, we obtain time series data from ViriCiti, which includes series of timestamps

and vehicle locations based on GPS. For electric buses, we also include features such as battery
current in ampere (𝐴), battery voltage (𝑉 ), battery state of charge, and charging cable status. For
diesel buses, we include fuel level and the total amount of fuel used over time in gallons. In total,
we have already obtained around 32.3 million data points for electric buses and 29.8 million data
points for diesel buses (Table 1). Fuel data is recorded less frequently; hence, there are fewer data
points for diesel buses.

2.1.2 Elevation, Weather, and Traffic Data. We collect static GIS elevation data from the Tennessee
Geographic Information Council [41]. From this source, we download high-resolution digital
elevation models (DEMs), derived from LIDAR elevation imaging, with a vertical accuracy of
approximately 10 cm [42]. We join the DEMs for Chattanooga into a single DEM file, which we
then use to determine the elevation of any location within the geographical region of our study.
We collect weather data from multiple weather stations in Chattanooga at 5-minute intervals

using the DarkSky API [11]. This data includes real-time temperature, humidity, air pressure, wind
speed, wind direction, and precipitation.
We collect traffic data at 1-minute intervals using the HERE API [20], which provides speed

recordings for segments of major roads. Every road segment is identified by a unique Traffic
Message Channel identifier (TMC ID) [1]. Each TMC ID is also associated with a list of latitude
and longitude coordinates, which describe the geometry of the road segment. We use weather and
traffic data collected from August 1, 2019 to March 31, 2020 to match the time range in Table 1.
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Fig. 1. Data architecture overview.

2.2 Data Architecture Framework
Next, we outline a general-purpose data architecture framework for storing the various smart-city
data streams. The purpose of this framework is to store the data streams in a way that provides easy
access for offline model training and updates as well as real-time access for system monitoring. Our
architecture consists of a publish-subscribe cluster implemented with Apache Pulsar [3], which
stores topic-labeled sensor streams, and a MongoDB database back-end. An overview of the data
architecture is provided in Figure 1, while the implementation of the data storage components is
shown in Figure 2.
The first challenge is the persistent storage of the high-velocity, high-volume data streams. In

this study, the real-time data sources—ViriCiti, HERE, and DarkSky—produce around 100 GiB of
data per month. Therefore, we choose a cloud based design to allow for fast horizontal scalability
of the system.
The second concern is that the data itself is highly unstructured and irregular as the sources

produce data at different rates. Therefore, we stream each data source to a topic-based publish-
subscribe (pub-sub) layer that persistently stores each data stream as a separate topic. The pub-sub
system consists of a single Apache Pulsar [3] cluster running on VMware [7] virtual machines
hosted at Vanderbilt University. We used a three-tiered naming convention for topic labeling. The
first tier represents the name of the data tenant and all authentication and access is managed at
this level. The second tier is the data category, i.e., vehicle telemetry, traffic, weather, etc. The
third tier is the topic name, which represents the data source or provider, such as ViriCiti, HERE,
or DarkSky. For ViriCiti vehicle-telemetry data, the fleet name is appended to the topic name to
separate electric, diesel, and hybrid vehicles. The tenant, category, and topic names together form a
topic, which downstream applications can use to access the data streams. We persistently store all
messages on each topic in an append-only ledger. Therefore, the topic can be used to read data in
near real-time or to playback previous data streams to synchronize new downstream applications.
All replication is handled at the ledger level, which allows downstream storage and applications to
adapt and expand without concern for data resiliency.

Model-training and inference require data from various streams to be merged. Typical implemen-
tations of stream processing architectures require external processing frameworks, such as Apache
Spark and Storm [22, 46]. For our system, we instead incorporate a customized stream-processing
layer into the pub-sub module. In this layer, data cleansing and processing functions are applied to
the raw data topics, and the processed data is then published to separate reformed topics, which
can easily be accessed for prediction or model training.
As shown in Figure 2, we use the pub-sub framework Apache Pulsar for the topic-based dis-

tributed ledger module. The storage component of Apache Pulsar relies on Apache BookKeeper [2],
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Fig. 2. Data architecture implementation.

which allows sharding of data at the topic level. As the size and velocity of data varies greatly
between data sources, topic-level sharding allows data to be evenly distributed between the storage
nodes and thus maximize resources in the cluster. Cluster state and coordination is managed with
Apache ZooKeeper [4]. The Apache Pulsar system provides automatic failover and load balancing.
Additionally, we added a custom monitoring system to detect abnormal changes in data ingestion
and processing behavior.

While distributed topic-based ledgers provide fast real-time access to data and easy data replica-
tion, the complexity of working with spatiotemporal data requires a more structured representation
of the data. For this, we used MongoDB [5], which provides native R-Tree geospatial indexing.
As a NoSQL document data store, MongoDB provides a flexible data model and efficient query
capabilities for training and batch analysis. Additionally, this model allows for easy large-scale ex-
ports in JSON format for sharing datasets between research sites. To ingest data into the MongoDB
database, we developed functions that subscribe to the data-stream topics in Pulsar to synchronize
MongoDB with the distributed ledgers in Pulsar. The MongoDB instance was deployed in Google
Cloud [6].

3 DATA PROCESSING FRAMEWORK
Before applying machine-learning models, we have to process the time series data recorded from the
vehicles by cleaning it, generating samples with a fixed-dimension feature space, and incorporating
data from other sources, including traffic and weather data. For each bus, the recorded data is a
series of datapoints, numbered 𝑖 = 0, 1, 2 . . ., where each datapoint is a tuple of a timestamp 𝑇𝑆𝑖 ,
a location 𝐿𝑖 , etc. For electric vehicles, each datapoint 𝑖 includes a battery current 𝐴𝑖 , a battery
voltage 𝑉𝑖 , a battery state of charge 𝑆𝑜𝐶𝑖 , and a charging cable status 𝐶𝑆𝑖 . For diesel vehicles, each
datapoint 𝑖 includes fuel consumption 𝐹𝑖 .

3.1 Removing Garage Locations and Charging
Since our goal is to predict the amount of energy used for driving, we remove all datapoints that
were recorded when a bus was (1) waiting in the garage or (2) charging. Thus, we remove every
datapoint 𝑖 whose GPS-based location 𝐿𝑖 falls in the geographical proximity of the CARTA bus
garage as follows:

distance(GarageLocation, 𝐿𝑖 ) < 400 meters −→ Drop datapoint 𝑖 (1)

For electric buses, we also remove every datapoint 𝑖 whose charging cable status 𝐶𝑆𝑖 indicates
that the vehicle was charging:

𝐶𝑆𝑖 = 1 −→ Drop datapoint 𝑖 (2)
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3.2 Estimating Energy Use for Electric Vehicles
For diesel buses, we can compute the amount of fuel used between two consecutive datapoints
as the change in the total amount fuel used. For electric buses, we could compute the amount of
energy used as the change in the battery state of charge (𝑆𝑜𝐶), which is the remaining battery
charge as a percentage of the total capacity. However, 𝑆𝑜𝐶 values are recorded with a low precision
of only one digit after the decimal point. To obtain accurate values, we need to estimate the amount
of energy used based on the recorded battery current (𝐴) and voltage (𝑉 ) values. At any time, the
instantaneous power use of the vehicle (in Watt) can be computed as 𝐴 ·𝑉 . We can estimate the
amount of energy used (in Joule), 𝐸𝑖 between consecutive datapoints 𝑖 − 1 and 𝑖 using Equation (3):

𝐸𝑖 = 𝐴𝑖 ·𝑉𝑖 · (𝑇𝑆𝑖 −𝑇𝑆𝑖−1) , (3)

where𝑇𝑆𝑖 is the timestamp of datapoint 𝑖 (in seconds). Since current and voltage values are recorded
at least once every second, the above formula provides a high-accuracy estimate. We confirmed that
our estimates are unbiased by comparing them to changes in 𝑆𝑜𝐶 over large numbers of datapoints.

3.3 Mapping GPS Locations to Roads
The recorded vehicle locations are inherently noisy since they are based on GPS. For example,
some of the locations fall onto streets or parking lots where a bus cannot even drive. This noise
presents a significant challenge for computing accurate travel distances and for integrating the time
series with other data sources. To mitigate this noise, we combine the recorded vehicle locations 𝐿𝑖
with a street-level map of Chattanooga, which we obtain from OpenStreetMap (OSM) [16]. OSM
represents each road using a disjoint set of segments, which are called OSM features. Specifically,
OSM divides each road into one or more segments along its length and assigns a unique OSM
Feature ID to each one of these road segments. These segments also have other properties, such
as type of the road (primary, secondary, service, residential, etc.), geometry of the road segment,
street name, etc.

To combine vehicle locations with the street-level map, wemap each location 𝐿𝑖 to a road segment.
The process of mapping a sequence of noisy GPS locations to the corresponding points on the
road network of a digital map has been widely used in location-based applications, such as vehicle
navigation [47] and analysis of urban road networks [26]. We introduce two novel methods for
mapping noisy locations to a road network: a heuristic algorithm and a machine-learning based
approach. In Section 9.2, we discuss the existing alternative approaches.

3.3.1 Heuristic Algorithm for Mapping. We map each recorded location 𝐿𝑖 to an OSM segment
(i.e., road segment). For a particular location 𝐿𝑖 , we consider as candidates the set of nearby OSM
segments based on geographical distance. First, we create an R-tree spatial index for the geometry
of the street-level map of Chattanooga, TN. Then, we intersect the spatial index with a bounding
disk around location 𝐿𝑖 , whose radius is the geographical distance threshold for considering a
road segment. The result of this intersection is a set of road segments that may intersect with the
bounding disk, from which we select the ones that actually intersect by calculating distances for
them one-by-one. Finally, we filter this set based on road types since we need to consider only
road segments where a bus can actually drive. So, we omit segments of several road types, such as
footway and cycleway, from the set of nearby segments.

For each nearby OSM segment, we count howmany of the preceding and following locations were
also near this segment. Finally, we select the segment that is near the most locations. Algorithm 1
details the process of mapping locations to OSM segments.
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Algorithm 1:Mapping Locations to OSM Segments
Input :𝐿 ← list of locations (i.e., datapoints from vehicle)

𝑀𝑎𝑝 ← OSM street-level map
𝑊𝐼𝑁𝐷𝑂𝑊 ← lookahead and lookback window

Output :𝑅𝑜𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 → OSM segments traveled
Initialization :
𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← [][] /* list of nearby OSM segments for each location */

𝑅𝑜𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 ← [] /* OSM segment for each 𝐿𝑖 after mapping */

for 𝑖 ∈ {1, . . . , |𝐿 |} do
𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑖] ← 𝑀𝑎𝑝.𝐹𝑖𝑛𝑑𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 (𝐿𝑖 )

for 𝑖 ∈ {1, . . . , |𝐿 |} do
if |𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑖] | > 0 then

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ← [ ]
for 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑖]) do

𝐶𝑜𝑢𝑛𝑡 ← 0
/* check within 𝑊𝐼𝑁𝐷𝑂𝑊 */

for 𝑗 ∈ {𝑖 −𝑊𝐼𝑁𝐷𝑂𝑊 , . . . , 𝑖 +𝑊𝐼𝑁𝐷𝑂𝑊 } do
for 𝑂𝑡ℎ𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 ∈ 𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [ 𝑗] do

if 𝑆𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑂𝑡ℎ𝑒𝑟𝑆𝑒𝑔𝑚𝑒𝑛𝑡 then
𝐶𝑜𝑢𝑛𝑡 ← 𝐶𝑜𝑢𝑛𝑡 + 1

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [𝑆𝑒𝑔𝑚𝑒𝑛𝑡] ← 𝐶𝑜𝑢𝑛𝑡

𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑎𝑟𝑔𝑚𝑎𝑥 𝑗 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 [ 𝑗]
𝑅𝑜𝑎𝑑𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑖] ← 𝑁𝑒𝑎𝑟𝑏𝑦𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 [𝑖] [𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑]

3.3.2 Machine Learning Approach for Mapping. In this approach, we train a regression model for
mapping noisy locations to OSM segments. Since there are thousands of OSM segments in cities
like Chattanooga, it would be very challenging to train a classifier that could directly output the
correct segment for any location. Instead, for each location 𝐿𝑖 , we first identify a set of nearby OSM
segments as candidates as described in Section 3.3.1, use the regression model to estimate how
likely each candidate segment is to be the correct one, and then output the most likely candidate.
The input variables of the regression model are based on the location and candidate OSM

segment. We use a total of 25 input variables, which include distance between the location and the
OSM segment, the road type of the OSM segment, the maximum, average, and minimum distance
between the OSM segment and the set of 15 preceding and following vehicle locations. The model
outputs a value in [0, 1] with 0 indicating the lowest likelihood that the location would be correctly
mapped to this OSM segment, and 1 indicating highest likelihood. For each location, we apply this
regression model to each nearby candidate OSM segment and map the location to the segment
with the highest likelihood.

To train the regression model, we create a training set of locations with ground truth for the
correct mapping to road segments. First, we generate routes using a street-level map and select
traces of locations along these routes, recording for each location the corresponding, correct road.
Then, we add random noise to the locations using a two-dimensional Gaussian distribution with
zero mean to simulate the noisiness of GPS-based locations. Finally, for each noisy location, we
gather all the nearby road segments, and we label the correctly mapped pairs of locations and road
segments with 1, and label the rest with 0. One important feature of the training is the level of
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noise that is added to the locations, which should be chosen to resemble real-world noise levels. In
Section 5.1, we experiment with different noise levels, the standard deviation of the noise varying
between 1 meter and 140 meters in both directions.

We implement the regression model using decision tree and linear regression models. For both
models, we use the implementation provided by the scikit-learn Python library. We set the maximum
depth of the decision tree to the total number of features in order to reduce memory consumption.
We also experiment with different values for the minimum number of samples for each split in
the tree until we find our best-fit. This parameter controls over-fitting: low values can lead to
over-fitting to a few samples, while high values may prevent learning accurate predictions from the
data. We evaluate both models based on 𝑅2 value, and find that the decision tree model performs
better than linear regression at all noise levels. For example, at a noise level of 8.88 meters, decision
tree model has an 𝑅2 value of 89.42, whereas at the same noise level, linear regression has 65.38. In
light of this, we opt to use decision tree regression in our framework.

3.3.3 Combination with Street-Level Information. Once we have mapped each location to an OSM
segment, we add the corresponding OSM Feature ID to each datapoint, which we use to generate
samples (Section 3.4) and later to calculate accurate travel distances (Section 3.5). We also add
information from OpenStreetMap regarding the road, such as the type of the road, whether the
road is one-way or two-way, whether it is a tunnel, etc. In our dataset, we encounter 14 different
road types in total, which include primary, residential, motorway, etc. For some roads, the type is
“unknown” on OpenStreetMap, which we treat as a distinct type.

3.4 Generating Samples
Next, we generate a set of samples, numbered 𝑗 = 1, 2, 3, . . ., from the time series data by dividing
the time series of each bus based on the traveled road segments. Specifically, for each bus, we treat
a maximal continuous travel on a particular road segment (i.e., particular OSM Feature ID) as one
sample. Each sample 𝑗 includes the starting location 𝐿start𝑗 , the end location 𝐿end𝑗 , the starting time
𝑇𝑆start𝑗 , the end time 𝑇𝑆end𝑗 , and the sum of the amount 𝐸 𝑗 of electric energy or fuel used between
the starting and end points. Thus, samples may be represented using a fixed-dimension feature
space, which facilitates feeding them into machine-learning models for training and prediction.

3.5 Calculating Travel Distance
Since GPS based locations are noisy, we combine them with OpenStreetMap to calculate the
distance traveled, 𝐷 𝑗 for each sample accurately. First, for each sample, we obtain the geometry of
the corresponding road segment fromOSM as a list of contiguous line segments, 𝑙𝑖𝑛𝑒1, 𝑙𝑖𝑛𝑒2, . . . 𝑙𝑖𝑛𝑒𝑛 .
Because the bus does not necessarily travel the complete distance of the road segment (e.g., it
could turn on a different street before reaching the end of the road segment), we need to identify
the first and last line segments that the bus actually traveled. We calculate the distance between
each line segment and the starting location 𝐿start𝑗 and end location 𝐿end𝑗 of the sample, which we
denote Dist𝑆 [] and Dist𝐸 [], respectively. Next, we identify the indices of the line segments that are
closest to 𝐿start𝑗 and 𝐿end𝑗 , which we denote index𝑆 and index𝐸 , respectively. Finally, we calculate
the distance traveled 𝐷 𝑗 for the sample based on the partial distance on line segment index𝑆 , the
complete distance of all line segments in between, and the partial distance on line segment index𝐸 ,
according to Algorithm 2.

3.6 Removing Erroneous Samples
Even though current and voltage values are almost always correctly recorded, we did find a few
datapoints that have erroneous or missing values, which result in extremely low, negative energy
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Algorithm 2: Calculating Travel Distance for Sample
Input :𝐿start𝑗 ← starting point of sample

𝐿end𝑗 ← end point of sample
𝑙𝑖𝑛𝑒1, 𝑙𝑖𝑛𝑒2, . . . , 𝑙𝑖𝑛𝑒𝑛 ← line segments of the OSM feature of the sample

Output : 𝐷 𝑗 → distance traveled in sample
for 𝑖 ∈ {1, . . . , 𝑛} do

Dist𝑆 [𝑖] ← distance between 𝐿start𝑗 and 𝑙𝑖𝑛𝑒𝑖
Dist𝐸 [𝑖] ← distance between 𝐿end𝑗 and 𝑙𝑖𝑛𝑒𝑖

index𝑆 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 Dist𝑆 [𝑖]
index𝐸 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑖 Dist𝐸 [𝑖]
/* vehicle moving in direction 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆 , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆+1, . . . , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸−1, 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸 */

if (𝑖𝑛𝑑𝑒𝑥𝑆 < 𝑖𝑛𝑑𝑒𝑥𝐸) then
𝑙1← distance between 𝐿start𝑗 and second endpoint of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆
𝑙2← sum length of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆+1, . . . , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸−1
𝑙3← distance between the first endpoint of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸 and 𝐿end𝑗

𝐷 𝑗 ← 𝑙1 + 𝑙2 + 𝑙3
/* vehicle moving in direction 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸 , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸+1, . . . , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆−1, 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆 */

else if (𝑖𝑛𝑑𝑒𝑥𝑆 > 𝑖𝑛𝑑𝑒𝑥𝐸) then
𝑙1← distance between 𝐿end𝑗 and second endpoint of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸
𝑙2← sum length of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝐸+1, . . . , 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆−1
𝑙3← distance between the first endpoint of 𝑙𝑖𝑛𝑒𝑖𝑛𝑑𝑒𝑥𝑆 and 𝐿start𝑗

𝐷 𝑗 ← 𝑙1 + 𝑙2 + 𝑙3
/* 𝑖𝑛𝑑𝑒𝑥𝑆 = 𝑖𝑛𝑑𝑒𝑥𝐸 */

else
𝐷 𝑗 ← distance between 𝐿start𝑗 and 𝐿end𝑗 .
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Fig. 3. Distribution of energy consumption values 𝐸 𝑗 for samples 𝑗 from electric vehicles in our dataset
(measured as change in battery state of charge).

consumption estimates, 𝐸 𝑗 . Note that many electric vehicles can recharge from braking; so 𝐸 𝑗 can
in fact be negative for some shorter samples when the bus is slowing down or going downhill.
However, erroneous values result in implausibly low values. Note that we did not observe any
erroneous values in diesel fuel consumption.
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Figure 3 shows the distribution of the energy consumption values 𝐸 𝑗 (measured as changes in
𝑆𝑜𝐶) for the 277,262 samples that we obtain for electric vehicles. Of these samples, 99.5% have
energy use values greater than or equal to -0.2. Only 1,407 samples have values lower than -0.2,
constituting 0.5% of the dataset. We remove these 1,407 samples from the dataset:

𝐸 𝑗 < −0.2 −→ Drop sample 𝑗 (4)

3.7 Incorporating Elevation
To add road gradients to the samples, we calculate the difference ΔElevation between the elevation
at the start and end points, 𝐿start𝑗 and 𝐿end𝑗 , of each sample:

ΔElevation = Elevation of 𝐿end𝑗 − Elevation of 𝐿start𝑗 (5)

The change in elevation captures the net potential energy gained or lost during the sample.

3.8 Incorporating Weather
Since our goal is to provide predictions for planning transit operations in advance, we cannot rely
on real-time data for weather. Instead, we compute hourly weather predictions for each station
based on the recorded historical weather data. Then, for each sample, we compute the distance
between the end point of the sample and each weather station, and we add the predicted weather
features of the closest station to the sample. Our weather dataset has a number of features, of which
we use temperature (T ), humidity (H ), visibility (V ), wind speed (W ), and precipitation (P).

3.9 Incorporating Traffic
Our traffic dataset consists of timestamped speed values recorded for segments of roads in Chat-
tanooga, which are identified using Traffic Message Channel (TMC) identifiers [1]. Each TMC
segment represents a specific, directed segment of a major road, whose geometry is stored as a list
of geo-points. While the TMC format is adequate for delivering and storing traffic information,
we must also be able to integrate traffic data with our samples, which reference road segments
using OSM Feature IDs. To this end, we need to map OSM segments to TMC segments. This
mapping presents two challenges. First, OpenStreetMap typically divides roads into significantly
smaller segments than TMC segments, so matching based on similarity of geometry is difficult.
Second, TMC segments cover only major roads, so most OSM segments cannot be mapped to any
TMC segment.

To set up the mapping, we first generate an OpenStreetMap routing graph. This graph enables
us to find the shortest driving-distance path between any two nodes, which represent real-world
locations, returning a list of edges. Each edge is labeled with the ID of the corresponding OSM
segment (i.e., road segment). Next, for the start and end geo-points of each TMC segment, we find
the closest nodes in the OSM routing graph. Finally, for each TMC segment, we find the shortest
path in the OSM routing graph between the start and end nodes, and we map each edge (i.e., OSM
segment) of the path to the TMC segment.
However, in some cases, the start and end geo-points of a TMC segment are matched to OSM

nodes on the opposite sides of a road, which causes errors in the mapping. Therefore, instead of
finding only the nearest OSM node, we find the four nearest nodes for each start and end geo-point.
Then, we find all the shortest paths between all the start and end nodes, select the path whose
length matches the actual length of the TMC segment most closely, and map the OSM segments of
only this path to the TMC segment. We found that this process significantly improves the OSM to
TMC mapping.
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Based on this mapping, we add traffic information to our samples. Similar to weather, we cannot
rely on real-time traffic for energy use prediction. Instead, we compute average traffic conditions
for each TMC segment for each hour of each day of the week based on the recorded data, and we
use these hourly averages as traffic predictions. For each sample, we add the hourly prediction for
the TMC segment to which the OSM feature of the sample is mapped. For samples that cannot be
mapped, we impute special values, which we discuss below. We add two features from our traffic
dataset to each sample: speed ratio and jam factor. Speed ratio is the actual traffic speed over the
free-flow speed; values around 1 mean light or no traffic, while values around 0 mean very heavy
traffic. Jam factor indicates the expected quality of travel, ranging from 0 (light or no traffic) to
10 (road closure) [20]. For samples that cannot be mapped to a TMC segment, we let the speed
ratio and jam factor be 1 and 0, respectively, since road segments that are missing from our traffic
dataset are typically minor roads, which rarely experience heavy traffic.

4 ENERGY CONSUMPTION PREDICTION MODELS
Our primary goal in this work is to enable transit agencies to minimize the energy use of their
vehicles through operational optimization, including the optimization of vehicle assignments. To
perform such optimization for mixed fleets of electric, diesel, and hybrid vehicles, transit agencies
must be able to predict how much energy a given vehicle would use on a given route at a given time.
To address this need, here we propose macroscopic energy predictors based on state-of-the-art
machine learning techniques, such as artificial neural networks, which take as input the processed
data that we described in the previous section. In subsequent sections, we evaluate the accuracy of
the proposed predictors and the usefulness of various input features based on real-world transit
data, and we formulate and solve a transit optimization problem based on the trained predictors.

We apply three different machine-learning models for predicting energy consumption: artificial
neural network, linear regression, and decision tree regression. We chose neural networks for
their superior prediction performance, which is confirmed by our numerical results. In contrast,
linear and decision tree regression do not perform as well, but their results are easier to understand
and explain. For example, linear regression shows the direct relation between input variables and
target features.

The input of the energy prediction models (i.e., training or test set) is a set of samples, where each
sample 𝑗 is a tuple of distance travelled𝐷 𝑗 , various road-type features, elevation change ΔElevation,
various weather features, various traffic features, and energy used 𝐸 𝑗 as the target feature. Before
training and testing, we map categorical variables (e.g., road type) into sets of binary features using
one-hot encoding. We train all three models to minimize mean squared error (MSE).

4.1 Artificial Neural Network
We found that different network structures work best for diesel and electric vehicles. For electric
vehicles, the best model has one input, two hidden, and one output layer. The input layer has
one neuron for each predictor variable. The two hidden layers have 100 neurons and 80 neurons,
respectively. For diesel, the best model has one input, five hidden, and one output layer. The five
hidden layers have 400, 200, 100, 50, and 25 neurons, respectively. In all the hidden layers, we use
sigmoid activation, and we use linear activation in the output layer. We optimize the models using
the Adam optimizer [23] with learning rate 0.001. To implement the ANN models, we use Keras,
which is a high-level API of TensorFlow for building and training deep learning models [10].

4.2 Linear Regression
Our second model is a standard multiple linear regression. We use the implementation provided by
the scikit-learn Python library.
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Fig. 4. Example of mapping locations to road segments without noise. Road segments that are output by
Algorithm 1 are highlighted in red.

Fig. 5. Mapping with noise with 14-meter std. dev. Fig. 6. Mapping with noise with 28-meter std. dev.

4.3 Decision Tree
Our third model is decision tree regression [40]. This model builds a tree structure based on
the training samples, where each node represents a decision based on the value of a feature
variable, and leaf nodes provide predictions. We use the implementation provided by the scikit-learn
Python library.

5 NUMERICAL RESULTS ON DATA PROCESSING AND ENERGY PREDICTION
5.1 Algorithms for Mapping GPS Locations to Road Segments
We begin by evaluating the accuracy of our algorithms for mapping noisy locations to OSM features.
Since we do not have ground truth for the correct mapping of the GPS-based locations of the real
transit vehicles, we create a test dataset with known ground truth. First, we generate routes using
a street-level map and select a set of locations along these routes, which are precisely on the
roads (Figure 4). Our test dataset has 721,492 different locations.2 Then, we add random noise to
these locations, generated using a two-dimensional Gaussian distribution with zero mean. We vary
the standard deviation of the noise between 1 meter and 140 meters in both directions. Figures 4
to 6 show locations with different levels of noise added, highlighting in red the road segments to
which locations are mapped by Algorithm 1. Finally, we map the noisy locations to road segments
using both Algorithm 1 and the machine-learning based approach with decision tree regression
(Section 3.3.2) and measure accuracy as the ratio of correctly mapped locations.

Figure 7 compares the accuracy of the two approaches for various levels of noise, ranging from
1.1-meter to 140-meter standard deviation in both directions. For minimum noise level (1.1 meters),
both the heuristic algorithm and the machine-learning approach attain accuracy above 98%. As
2Note that we use these synthetic location traces only for the evaluation of the mapping approaches, where we need
ground-truth segments; for training and evaluating energy-use prediction, we use real location traces from CARTA vehicles.
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Fig. 7. Accuracy of mapping noisy locations to road segments using heuristic (Algorithm 1) and machine-
learning approach (Section 3.3.2). Accuracy is measured as the fraction of locations that are mapped to the
correct road segment.

expected, the accuracy of both approaches decreases as the level of noise increases. However, the
machine-learning approach performs better than the heuristic algorithm for higher noise levels.
For example, with 38.9-meter standard deviation, the former achieves 64.4% accuracy, while the
latter attains only 56.9%. Nonetheless, for reasonable noise levels, such as around 10-meter standard
deviation, the machine-learning approach can correctly map more than 90% of locations.

5.2 Comparison of Weather, Traffic, and Elevation Features
For both electric and diesel buses, we have a set of 26 features in each sample, besides energy use
as the target feature. The input features are distance traveled, 14 road-type features (primary,
secondary, residential, etc.), elevation change, day of week, time of day, 5 weather features (tem-
perature, humidity, visibility, wind-speed, and precipitation), and 2 traffic features (speed ratio
and jam factor). Now, we study which of these features are the most useful for predicting energy
consumption, and which subset of features results in the lowest prediction error.
Note that there exist algorithmic approaches for feature selection (see, e.g., [28]), which can

be applied to a dataset to find a subset of features that minimizes prediction error. Our objective
here is different: we would like to provide general guidance on how to collect transit datasets by
studying which features are the most useful for different types of vehicles. To this end, we explore
various subsets of features as exhaustively as possible, and we report prediction errors for all of
these subsets. These results can help transit agencies, which may have limited resources for data
collection, to focus on the most useful features for their operations.

After preparing the samples for both the electric and diesel buses, we randomly split them into
training (80%) and test sets (20%). We use the same split ratio in all subsequent experiments. Since
artificial neural networks attain the lowest prediction error (see Section 5.4), we compare features
based on this model. We include vehicle-level data in all experiments, and try different combinations
of weather, elevation, and traffic data.

Figure 8a shows that elevation is by far the most significant feature for electric vehicles. Traffic
data does improve prediction, but its impact is much smaller, especially if elevation is already
included. This can be explained by regenerative breaking: the energy use of electric vehicles is not
impacted by heavy traffic since they do not lose energy due to frequent braking. On the other hand,
Figure 8b shows that for diesel vehicles, both elevation and traffic data are significant, and both
need to be included for good performance. Finally, we find that weather data has the lowest impact
on prediction error for both electric and diesel vehicles.
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Fig. 8. Mean squared error for energy prediction with various sets of features. Note that electric and diesel
energy are measured in different units. The predictions are based on artificial neural networks.
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Fig. 9. Mean squared error for energy prediction with various weather features and their combinations. The
predictions are based on artificial neural networks with all non-weather features included.

5.3 Comparison of Different Weather Features
Since weather data has many features, we also present a comparison among various weather
features to see which ones help with prediction the most. We consider temperature (T ), humidity
(H ), visibility (V ), wind speed (W ), and precipitation (P) in this comparison.

Figure 9 shows prediction error with various combinations of weather features (with traffic and
elevation always included). For both vehicles, we find temperature (T) to be the most significant
weather feature. Humidity (H) and windspeed (W) also significantly reduce the prediction error for
electric vehicles (Figure 9a). However, we attain the lowest prediction error for both vehicles using
the combination of temperature (T), visibility (V) and precipitation (P).
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Fig. 10. Comparison of different energy prediction models based on mean squared error (MSE) and mean
absolute error (MAE) for electric vehicle samples.
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Fig. 11. Comparison of different energy prediction models based on mean squared error (MSE) and mean
absolute error (MAE) for diesel vehicle samples.

5.4 Comparison of Prediction Models for Samples
We first evaluate the three machine-learning models based on how well they predict energy use
for samples. Our samples represent segments of trips that are short in both distance and duration,
presenting a challenging problem for prediction.
Figures 10 and 11 show mean squared error (MSE) and mean absolute error (MAE) for the three

models. Based on MSE, the artificial neural network (ANN) outperforms the other two models for
both electric and diesel vehicles. However, based on MAE, ANN outperforms decision trees (DT)
for diesel vehicles but not for electric vehicles. Note that we optimized all models to minimize MSE,
which can explain the slightly inferior performance of ANN for MAE. We have not encountered
any overfitting since our training and testing errors were consistent for each model.

5.5 Comparison of Prediction Models for Longer Trips
Finally, we study how well our models perform with respect to predicting energy use for longer
trips. First, we divide our time series into longer trips, varying the length of the trips between 10
minutes and 6 hours. For each trip, we generate a set of samples (as described in Section 3), use our
models to predict energy use for each sample, and then compare the sum of these predictions to
the actual energy use of the trip.
Figure 12 shows the relative prediction error for trips of various lengths. For each length, we

plot an average error value computed over many trips. We see that relative prediction error is
generally lower for longer trips; this is expected as the individual errors of large numbers of samples
cancel each other out with an unbiased prediction model. For diesel vehicles, we find that the
ANN outperforms the other models significantly for all trip lengths. On the other hand, for electric
vehicles, ANN and DT perform equally well for most trip lengths.
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Fig. 12. Energy prediction error for longer trips, consisting of many samples, with neural network (ANN),
decision tree (DT), and linear regression (LR).

6 TRANSIT OPTIMIZATION PROBLEM
In the previous sections, we have shown how to predict the energy consumption of EVs and
ICEVs by incorporating a variety of processed features into machine-learning models. Based on the
numerical results, we can say that our predictions are accurate, especially at the level of trips. In
this section, we focus on utilizing these accurate energy consumption predictions for operational
optimization. Specifically, building on our ability to predict energy consumption for any given
vehicle and any given transit trip, we formulate and solve the problem of minimizing energy
consumption by assigning a mixed-vehicle fleet of transit buses to fixed-route transit trips. We
first introduce our model of transit vehicles and routes (Section 6.1). Our formulation considers
assigning and scheduling for a single day (it may be applied to any number of consecutive days
one-by-one), and permits any physically possible re-assignment during the day. Then, we formulate
the problem of optimal assignment, specifying the space of feasible solution and our objective
function (Section 6.2).

6.1 Transit Model
Vehicles. We consider a transit agency that operates a set of buses V . Note that we will use the

terms bus and vehicle interchangeably. Each bus 𝑣 ∈ V belongs to a vehicle model 𝑀𝑣 ∈ M (e.g.,
2016 BYD K9S 35-foot battery-electric model), whereM is the set of all vehicle models in operation.
We divide the set of vehicle modelsM into two disjoint subsets: liquid-fuel modelsMgas (e.g.,
diesel, hybrid), and electric modelsMelec.

Locations. Locations L include bus stops and garages in the transit network.

Trips. During the day, the agency has to serve a given set of transit trips T using its buses.
Based on discussions with our partner agency, CARTA, we assume that all the locations and time
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schedules are fixed for all the trips. A bus serving trip 𝑡 ∈ T leaves from trip origin 𝜆origin𝑡 ∈ L
at time 𝜏 start𝑡 and arrives to destination 𝜆destination𝑡 ∈ L at time 𝜏end𝑡 . Between 𝜆origin𝑡 and 𝜆destination𝑡 ,
the bus must pass through a series of stops at fixed times; however, since we cannot re-assign a
bus during a transit trip, the locations and times of these stops are inconsequential to our model.
Finally, we assume that any bus may serve any trip. Note that it would be straightforward to extend
our model and algorithms to consider constraints on which buses may serve a trip (e.g., based on
passenger capacity).

Non-Service Trips. Besides serving transit trips, buses may also need to drive between trips. For
example, if a bus has to serve a trip that starts from a location that is different from the destination
of the previous trip, the bus first needs to drive to the origin of the next trip. We will refer to these
deadhead trips, which are driven outside of revenue service, as non-service trips. We let 𝑇 (𝑙1, 𝑙2)
denote the non-service trip from location 𝑙1 ∈ L to 𝑙2 ∈ L, and we let 𝐷 (𝑙1, 𝑙2) denote the time
duration of this non-service trip.

6.2 Solution Space and Objective
Solution Representation. Our goal is to assign a bus to each transit trip. We represent a solution

as a set of assignments A. For each trip 𝑡 ∈ T , a solution assigns exactly one bus 𝑣 ∈ V to serve 𝑡 ;
this assignment is represented by the relation A𝑡 → 𝑣 .

Constraints. If a bus is assigned to serve an earlier transit trip 𝑡1 and a later trip 𝑡2, then the
duration of the non-service trip from 𝜆destination𝑡1

to 𝜆origin𝑡2
must be less than or equal to the time

between 𝜏end𝑡1
and 𝜏 start𝑡2

. Otherwise, it would not be able to serve 𝑡2 on time. We formulate this
constraint as follows:

∀𝑡1, 𝑡2 ∈ T , 𝜏 start𝑡1 ≤ 𝜏 start𝑡2 ,A𝑡1 → 𝑣,A𝑡2 → 𝑣 : 𝜏end𝑡1 + 𝐷 (𝜆
destination
𝑡1 , 𝜆

origin
𝑡2
) ≤ 𝜏 start𝑡2 (6)

Note that if the constraint is satisfied by every pair of consecutive trips assigned to a bus, then it is
also satisfied by every pair of non-consecutive assigned trips.

Objective. Our objective is to minimize the energy use of the vehicles. This objective can minimize
both environmental impact and operating costs by imposing the appropriate cost factors on the
energy use of liquid-fuel and electric vehicles.

First, we letN(A, 𝑣) denote the set of all non-service trips that bus 𝑣 needs to complete according
to the set of assignments A (i.e., for each consecutive pair of transit trips 𝑡1, 𝑡2 that A assigns to 𝑣 ,
there is a non-service trip 𝑇 (𝜆destination𝑡1

, 𝜆
origin
𝑡2
) in N(A, 𝑣)). We can formally express N(A, 𝑣) as

follows:
N(A, 𝑣) =

{
𝑇 (𝜆𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑡1 , 𝜆

𝑜𝑟𝑖𝑔𝑖𝑛

𝑡2
) |𝑡1, 𝑡2 ∈ T ∧ 𝑣 ∈ V ∧ 𝜏 start𝑡1 ≤ 𝜏 start𝑡2 ∧ A𝑡1 → 𝑣 ∧ A𝑡2 → 𝑣∧

(∀𝑡 ∈ T ∧ ((𝜏 start𝑡1 ≤ 𝜏 start𝑡 ≤ 𝜏 start𝑡2 ∧ ¬A𝑡 → 𝑣) ∨ (𝜏 start𝑡 < 𝜏 start𝑡1 ) ∨ (𝜏
start
𝑡 > 𝜏 start𝑡2 ))}

(7)

Next, we let 𝐸 (𝑣, 𝑡) denote the amount of energy used by bus 𝑣 to drive a transit or non-service
trip 𝑡 . Then, we can express the amount of energy used by bus 𝑣 for all trips in assignment A as

𝑒 (A, 𝑣) =
∑

𝑡 ∈N(A,𝑣)
𝐸 (𝑣, 𝑡) +

∑
𝑡 ∈T: A𝑡→𝑣

𝐸 (𝑣, 𝑡) (8)

Finally, let 𝐾gas and 𝐾elec denote the unit costs of energy use for liquid-fuel and electric vehicles,
respectively. Then, we can express our objective as

min
A

∑
𝑣∈V: 𝑀𝑣 ∈Mgas

𝐾gas · 𝑒 (A, 𝑣) +
∑

𝑣∈V: 𝑀𝑣 ∈Melec

𝐾elec · 𝑒 (A, 𝑣) (9)
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7 TRANSIT OPTIMIZATION ALGORITHMS
First, we present an integer program to find optimal solutions (Section 7.1), whose linear relaxation
we will also use as a lower bound in our numerical evaluation. Since the integer program does not
scale well, we will also introduce efficient heuristic (Section 7.2) and genetic algorithms (Section 7.3).

7.1 Integer Program
Variables. Our integer program has two sets of binary variables. First, 𝑎𝑣,𝑡 = 1 (or 0) indicates

that trip 𝑡 is assigned to bus 𝑣 (or that it is not). Second,𝑚𝑣,𝑡1,𝑡2 = 1 (or 0) indicates that bus 𝑣 takes
the non-service trip between a pair 𝑡1 and 𝑡2 of transit trips or not.

Constraints. First, we ensure that every transit trip is served by exactly one bus:

∀𝑡 ∈ T :
∑
𝑣∈V

𝑎𝑣,𝑡 = 1

Next, we ensure that Equation (6) is satisfied. We let 𝐹 (𝑡1, 𝑡2) be true if a pair 𝑡1, 𝑡2 of transit trips
satisfy Equation (6) (in the appropriate temporal order); and let it be false otherwise. Then, we can
express the constraint as follows:

∀𝑣 ∈ V,∀𝑡1, 𝑡2,¬𝐹 (𝑡1, 𝑡2) : 𝑎𝑣,𝑡1 + 𝑎𝑣,𝑡2 ≤ 1

Finally, when a bus 𝑣 is assigned to both trips 𝑡1 and 𝑡2, but it is not assigned to any other transit
trips in between (i.e., if trips 𝑡1 and 𝑡2 are consecutive assignments), then bus 𝑣 needs to make a
non-service trip:

𝑚𝑣,𝑡1,𝑡2 ≥ 𝑎𝑣,𝑡1 + 𝑎𝑣,𝑡2 − 1 −
∑

𝑡 ∈T: 𝜏 start𝑡1 ≤𝜏
start
𝑡 ≤𝜏 start𝑡2

𝑎𝑣,𝑡

Note that if trips 𝑡1 and 𝑡2 have the same location, then the non-service trip will take zero time and
energy by definition.

Objective. We can express Equation (9) as minimizing∑
𝑣∈V

𝐾𝑀𝑣

[∑
𝑡 ∈T

𝑎𝑣,𝑡 ·𝐸 (𝑣, 𝑡) +
∑

𝑡1,𝑡2∈T
𝑚𝑣,𝑡1,𝑡2 ·𝐸 (𝑣,𝑇 (𝑡1, 𝑡2))

]
where 𝐾𝑀𝑣 is 𝐾elec if𝑀𝑣 ∈ Melec and 𝐾gas otherwise.

Complexity. The integer program contains both variables and constraints in the order of O(|V| ·
|T |2). Note that regardless, an integer programming solver may take exponential time in the input
to find an optimal solution.

7.2 Heuristic Algorithms
Next, we introduce two polynomial-time heuristic algorithms.

Feasibility. Both heuristic algorithms need to ensure that buses are assigned to trips without
violating Equation (6). We let FEASIBLE be a subroutine that checks whether the transit trip 𝑡 can
be assigned to vehicle 𝑣 without violating Equation (6). In other words, FEASIBLE checks if for
every 𝑡 such that A𝑡 → 𝑣 , trips 𝑡 and 𝑡 ′ satisfy Equation (6) (in the appropriate temporal order).

Heuristic by Location (Heuristic L):. The motivation of this approach is to minimize energy costs
by reducing non-service trips. Algorithm 3 first groups together all trips that share an origin or
destination location. Then, it iterates over the groups in a random order. For each group, it sorts
the trips according to their start times, and then assigns vehicles to the trips one-by-one, always
choosing a feasible vehicle at random. The time complexity of the algorithm is O(|V| · |T | · log |T |).
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Algorithm 3: HEURISTIC BY LOCATION(V,T)
stop_pairs← {}
for 𝑡 ∈ T do

stop_pair← {𝜆origin𝑡 , 𝜆destination𝑡 }
T ′← stop_pairs.get(stop_pair)
T ′← T ′ ∪ {𝑡}
stop_pairs← stop_pairs ∪ {stop_pair,T ′}

stop_pairs’← shuffle(stop_pairs)
for stop_pair ∈ stop_pairs’ do
T ′← stop_pairs.get(stop_pair)
for 𝑡 ∈ sortedByTime(T ′) do
V ′← shuffle(V)
for 𝑣 ∈ V ′ do

feasible← FEASIBLE(A, 𝑣, 𝑡)
if feasible then
A ← A ∪ ⟨𝑣, 𝑡⟩

Result: A

Algorithm 4: HEURISTIC BY BUS(V,T)
for 𝑡 ∈ sortedByTime(T ) do
V ′← shuffle(V)
for 𝑣 ∈ V ′ do

feasible← FEASIBLE(A, 𝑣, 𝑡)
if feasible then
A ← A ∪ ⟨𝑣, 𝑡⟩

Result: A

Heuristic by Bus (Heuristic B):. The motivation of this approach is to optimize the utilization of
every bus. Algorithm 4 first sorts all transit trips based on their start time. Then, it iterates over the
buses in a random order. For each bus, it tries to assign every trip to the bus, going over the trips
one-by-one. The time complexity of this approach is O(|V| · |T | · log |T |).

7.3 Genetic Algorithm
Building on the two heuristic algorithms, we introduce a genetic algorithm, which uses the heuristic
algorithms for its initial population P0, but improves upon them using iterative random search.
The time complexity of each iteration is O(|V| · |T | · |P0 | · log |T |).

Initialization. The genetic algorithm starts with a fixed-size initial population P0 of solutions.
We generate each member of the initial population using the two heuristic algorithms.

Selection. The algorithm computes the energy cost of each solution in the current population P𝑖 ,
and then chooses the 𝑁 lowest-cost solutions as the basis for the next generation of the population.
To create the next generation, the algorithm performs mutation and crossover.

Mutation (Algorithm 5). Mutation first selects one solution A at random from the basis of the
next generation. Then, it selects two buses 𝑣1 and 𝑣2 at random, and selects a transit trip 𝑡1 at
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Algorithm 5: MUTATION(P𝑖 )
A ← random(P𝑖 )
mCount← max(1, |A| ·mutation_prob)
for 1→ mCount do

𝑣1, 𝑣2 ← random(V)
𝑡1 ← random(A, 𝑣1)
𝑡2 ← random(A, 𝑣2)
A ← A − {𝑣1, 𝑡1} − {𝑣2, 𝑡2}
feasible1 ← FEASIBLE(A, 𝑣1, 𝑡2)
feasible2 ← FEASIBLE(A, 𝑣2, 𝑡1)
feasible← feasible1 ∧ feasible2
if feasible then
A ← A ∪ {𝑣1, 𝑡2} ∪ {𝑣2, 𝑡1}

Result: A

Algorithm 6: CROSSOVER(P𝑖 )
P𝑐 ← ∅
A1 ← random(P𝑖 )
A2 ← random(P𝑖 − A1)
crossover_point← random(0, 1)
A1𝑎,A1𝑏 ← split(A1, crossover_point)
A2𝑎,A2𝑏 ← split(A2, crossover_point)
A1′ ← merge(A1𝑎,A2𝑏)
A2′ ← merge(A2𝑎,A1𝑏)
P𝑐 ← select({A1,A2,A1′,A2′}, 2)
Result: P𝑐

random from the trips assigned to 𝑣1 by A, and trip 𝑡2 at random from the trips assigned to 𝑣2. If
the assignments of trips 𝑡1 and 𝑡2 can be switched between buses 𝑣1 and 𝑣2 without violating any
constraints, then it switches them. The algorithm repeats from selecting two buses at random, until
a desired number of mutation attempts is reached.

Crossover (Algorithm 6). Crossover first selects two solutions A1 and A2 at random from the
basis of the next generation, and chooses a crossover point at random from (0, 1), which is used
to divide the day into two parts at random. Then, it splits each solution A𝑖 into two subsets of
assignments based on the crossover point: assignments that belong to the first part of the day
form the first subset, while assignment that belong to the second part form the second subset.
Next, it merges the four parts by swapping the parts of the two solutions. Finally, it selects the two
lowest-cost solutions out of the initial solutions and the merged solution, automatically discarding
infeasible ones.

Iteration and Termination. In each iteration, the genetic algorithm generates a new generation
of solutions based on selection, mutation, and crossover. The algorithm terminates when there is
no decrease in the minimum energy cost over a number of new generations, which indicates that
algorithm converged.
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Fig. 13. Computation times for assignments using Heuristic B, Heuristic L, genetic algorithm (GA), and
integer program (IP) for smaller problem instances (1 to 17 bus-lines serving 15 transit trips per bus-line).
Please note the logarithmic scale on the vertical axis.

8 NUMERICAL RESULTS ON TRANSIT OPTIMIZATION
To evaluate the computational approaches that we proposed for solving the transit optimization
problem (i.e., IP, heuristics, and genetic algorithm), we build on the energy consumption predictors
that we introduced earlier. First, we obtain and process real-world data from CARTA, our partner
transit agency in Chattanooga, TN, as described in Sections 2 and 3; and we train neural-network
based energy consumption predictors as described in Sections 4 and 5. Then, we use these pre-
dictors to estimate the energy cost of each transit and non-service trip for both EVs and ICEVs.
Finally, we combine these energy-cost estimates with the actual transit schedule of the agency
to create instances of the transit optimization problem, which we use to evaluate the proposed
computational approaches.

8.1 Settings and Data
Public Transit Schedule. We obtain the schedule of the transit agency in GTFS format, which

includes all trips, time schedules, bus stop locations, etc. Trips are organized into 19 bus lines (i.e., bus
routes) throughout the city. Among those 19 bus lines, 2 bus lines are dedicated for shuttle services;
thus, we ignore them and consider only the remaining 17 fixed-route bus lines in our numerical
analysis. For our numerical evaluation, we consider trips served during weekdays (Monday to
Friday) since these are the busiest days. Each weekday, the agency must serve around 850 trips
based on 17 bus lines using 3 electric buses of model BYD K9S, and 50 diesel and hybrid buses.

Non-Service Trips. Since non-service trips are not part of the transit schedule, we need to plan
their routes and estimate their durations. For this, we use the Google Directions API, which we
query for all 1806 possible non-service trips (i.e., for every pair of locations in the network) for
each 1-hour interval of a selected weekday from 5am to 11pm. The response to each query includes
an estimated duration as well as a detailed route.

Energy Costs. Finally, we take series of locations along the route of each transit and non-service
trip, combine them with our other data sources as described in Section 3, and then feed them into
our trained energy-use predictors to estimate the energy usage and cost of each trip.
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8.2 Results
We first study howwell our algorithms scale with increasing problem sizes. To this end, we measure
the computation times of our algorithms with 1 to 17 bus lines (selected at random from real CARTA
bus lines), and 15 trips selected at random for each line. Since two of the bus lines have less than
15 trips (10 and 14 trips, respectively), for cases with 16 to 17 bus lines, we include all trips for
these lines. For cases with 11 to 17 bus lines, we assign the entire vehicle fleet of CARTA, which
consists of 3 electric and 50 liquid-fuel buses. For cases with fewer bus lines, we assume that the
agency has only 5 times as many liquid-fuel buses as bus lines and has 3 electric buses. We solve the
integer program (IP) using IBM CPLEX. We run all algorithms on a machine with a Xeon E5-2680
CPU, which has 28 cores, and 128 GB of RAM. Figure 13 shows the average computation time for
the IP, the Heuristic B algorithm, the Heuristic L algorithm, and the genetic algorithm based on 8
random instances (with different sets of bus lines and trips) for each problem size. As expected, the
time to solve the IP is significantly higher than the running time of the Heuristic algorithms for
all problem sizes. Further, the solution time of the IP increases rapidly with the problem size and
becomes significantly higher than the running time of the genetic algorithm for 9 bus lines. In fact,
solving the IP for 10 or more bus lines was infeasible on our test machine in terms of memory and
running time. On the other hand, the genetic algorithm scales very well computationally despite
having a fairly high constant factor in its running time.
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Fig. 14. Energy costs for assignments using Heuristic B, Heuristic L, genetic algorithm (GA), integer program
(IP), and linear program (LP) for smaller problem instances (1 to 17 bus-lines serving 15 transit trips per
bus-line). Please note the logarithmic scale on the vertical axis.

Next, we evaluate the performance of our algorithms with respect to solution quality, that is,
with respect to energy cost. We use the exact same setting as in the previous experiment. Since
solving the IP is infeasible for larger problem instances, we include its linear relaxation (LP) in this
evaluation. While the LP does not provide a feasible solution, it can serve as a lower bound on the
energy cost, to which we can compare our other algorithms. Figure 14 shows the average energy
cost for the IP, its linear relaxation (LP), the Heuristic B algorithm, the Heuristic L algorithm, and
the genetic algorithm based on 8 random instances (with different sets of bus lines and trips) for
each problem size. In this figure, we compare the solution quality of the two heuristic algorithms
and the genetic algorithm to the optimal solutions obtained from the IP. Since the IP is unable to
scale for larger problem instances due to memory limitations and longer computation times, we
plot the optimal solutions based on IP for instances with up to 9 bus lines. The figure shows that
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our efficient algorithms perform well: the genetic algorithm performs almost as well as the IP, and
the heuristic algorithms perform only slightly worse. For larger instances, the ratios between the
performance of the LP and our heuristic and genetic algorithms remain stable, which suggests that
our algorithms still perform close to optimal.

Finally, we compute assignments for the complete daily schedule with 3 electric and 50 liquid-fuel
buses using heuristic and genetic algorithms for 5 different sample days. We were able to assign
the complete daily schedule using Heuristic B algorithm in around 3 minutes, resulting in average
energy cost of $8,290. Meanwhile, the genetic algorithm runs for around 1 day (around 2,000
iterations) and results in average energy cost of $8,083. Since an agency might need to find a new
assignment every day (e.g., because some buses are unavailable due to maintenance), the heuristic
algorithm can be a better option.

9 RELATEDWORK
In this section, we provide an overview of related work on predicting the energy use of vehicles
(Section 9.1), mapping noisy locations to roads (Section 9.2), and assigning and scheduling transit
vehicles (Section 9.3).

9.1 Energy Use Prediction
Our study is most closely related to the work of Cauwer et al. and of Wickramanayake and
Bandara. Cauwer et al. [12] use a cascade of ANN and multiple linear regression models as a
data-driven energy-consumption prediction method for EVs. Their study uses vehicle monitoring
data for two types of vehicles as time series of tuples with location, vehicle speed, and energy-
consumption information, such as battery voltage, current, and SoC. Their dataset also includes
road-network data, weather data, and an altitude map. Our approach has some similarity to this
study. However, we also use traffic data in our model, which we find to be very helpful for diesel
prediction. Wickramanayake and Bandara [45] assess three different techniques for predicting the
fuel consumption of a long-distance public bus. Their time series of tuples include GPS location,
bearing, elevation, distance travelled, speed, acceleration, ignition status, battery voltage, fuel level,
and fuel consumption. The authors compare the performance among two ensemble models, random
forest and gradient boosting, and one ANN model. However, their study lacks critical parameters,
such as road information, traffic, weather, etc.

Perrotta et al. [38] compare the performance of SVM, RF, and ANN in modeling fuel consumption
of a large fleet of trucks. Their features include gross vehicle weight, speed, acceleration, geo-
graphical position, torque percentage, revolutions of the engine, activation of cruise control, use of
brakes and acceleration pedal, measurement of travelled distance, fuel consumption. The study also
integrates some road characteristics. Based on comparison of the RMSE, MAE, and 𝑅2 scores of the
prediction, RF gives the best performance. Nageshrao et al. [33] model the energy consumption of
electric buses based on time-dependent factors such as ambient temperature and speed, battery
capacity, total mass, battery parameters, etc. They use a NARX based ANN time series predictor to
predict the state of charge of the battery. Gao et al. [14] discuss an adaptive wavelet neural network
(WNN) based energy prediction. Their study uses features such as day type, temperature, rainfall,
the travelled distance, and clarity of the atmosphere. The study groups the trip days based on
similar attributes, using Grey Relational Analysis (GRA) and then implements the Adaptive WNN.

There also exist prior efforts to utilize spatial and temporal data to model the energy consumption
of bus transit networks and to estimate costs. Wang et al. [43] collect GPS records of vehicle position
and vehicle status and GPS location details of bus stops and bus transaction data of passenger fares.
Wang et al. [44] and Hassold et al. [19] obtain historical transaction data. Li et al. [30], Paul et al.
[37] and Li et al. [29] gather the distance of each trip in the bus transit network schedule. Santos
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et al. [39] and Zhou et al. [48] make use of publicly available resources, which provide details
of average energy costs per unit of energy, emission rate per unit of energy consumption, and
consumption rates per unit distance. In contrast to previous efforts, we collect traffic, elevation and
weather data in addition to vehicle position and vehicle status data.

9.2 Mapping Locations to Roads
There are several studies on mapping GPS observations to a road network. These generally apply
machine learning approaches or Hidden Markov Model (HMM) based algorithms.

Hashemi and Karimi [17] propose an ANN-based approach to reduce the horizontal error in loca-
tions obtained from GPS. Specifically, the proposed ANN modifies the GPS locations by attempting
to remove the measurement error. Hashemi and Karimi [18] also introduce a weight-based map-
matching algorithm, which maps these modified locations to road segments. Their map-matching
algorithm attempts to identify the correct segment based on distance between the location and
each road segment, direction of spatial difference, and similarity between the direction of each
road segment and the heading of the vehicle at the location. Our data preparation steps for the
location-mapping decision tree regression model (Section 3.3.2) are similar to their weight-based
approach. However, our approach also uses the average, maximum, and minimum distances be-
tween a location and the candidate road segments of the preceding and following vehicle locations,
road types, as well as the number of times a segment appears in the candidate sets of the preceding
and following vehicle locations.
Newson and Krumm [34] use HMM with candidate routes chosen from within a 200-meter

radius. After calculating the emission and transition probability of each route, HMM chooses the
route with the highest probability. They evaluate their system based on various levels of noise and
sampling rate. The algorithm is proven to be useful for noise levels as high as 50-meters. Mohamed
et al. [31] implement a similar incremental HMM algorithm where a number of pre-processing
modules reduce the noise and spareness in the input data. Goh et al. [15] also use HMM with
candidate routes set to be within a 50-meter radius around a GPS location. In addition to the model,
they use a Variable Sliding Window (VSW) algorithm that performs backtracking on the updated
Markov chain.

9.3 Energy Use Optimization
Prior research efforts have explored multiple approaches for scheduling public transit and assigning
vehicles. Wang et al. [43] design a real-time charge scheduling system, called bCharge, for electric
bus fleets. To evaluate their system, they use a real-world streaming dataset from Shenzhen, China,
which includes GPS location, bus stop, bus transaction, charging station, and electricity rate data.
Their approach is based on Markov decision processes and considers both energy costs and bus
fare revenues; however, it is limited to bus transit networks operating only EVs, and it modifies
the existing schedule, which is not always feasible in practice. In contrast, we consider bus transit
networks operating mixed fleets of EVs and ICEVs, and keep the schedule intact.

Murphey et al. [32] propose the ML_EMO_HEV framework for energy management optimization
of hybrid-electric vehicles. Their framework first uses a ANN to model the road environment
of a driving trip as a sequence of different roadway types and traffic congestion levels. Then, it
uses an additional ANN to model the driver’s instantaneous reaction to the driving environment.
Finally, the framework uses an additional set of ANN to emulate the optimal energy management
strategy. Li et al. [29] study scheduling electric buses considering the range constraints of EVs. They
apply a branch-and-price approach for smaller instances of the problem and use a heuristic based
column-generation approach with variable fixing for larger problem instances. They calculate the
distance of deadheading trips by mapping a stop to the nearest intersection using point-to-curve
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matching, then solve one-to-one shortest-path problems using Dijkstra’s algorithm, based on the
road geometry data obtained from NavTeq.
Research efforts such as Zhou et al. [48], Li et al. [30], Santos et al. [39], Paul et al. [37] and

Li et al. [29] consider bus transit networks operating mixed fleets of vehicles. Zhou et al. [48]
improve an existing iterative neighbour search algorithm, where they obtain the initial solution
using local search strategies, such as SHIFT, 2opt* and Block, and enhance the solution based
on simulated annealing. Santos et al. [39] develop evolutionary algorithms to minimize energy
and emission costs, while ensuring that service level is unchanged. Paul et al. [37] implement
𝑘-greedy and genetic algorithms for minimizing energy costs by optimally assigning mixed fleets
of vehicles to transit trips. Santos et al. [39] use fixed costs, emission and consumption rates for
different types of vehicles, while Paul et al. [37] assume that energy costs are fixed per unit distance
without considering spatial and temporal factors. Unlike the previous research efforts, we derive
realistic energy estimates using our energy predictors based on vehicle locations, traffic, elevation,
and weather.
Li et al. [30] apply mixed-integer linear programming and time-space bus-flow networks to

schedule mixed fleets for bus transit networks, which operate EVs that have limited service range.
Li et al. [30] and Kliewer et al. [24, 25] allow a bus to serve multiple lines instead of limiting it to a
single line, which can reduce energy costs; we also incorporate a similar approach. Li et al.’s [30]
approach groups together trips as origin-destination pairs, which also reduces the energy costs; we
again explore a similar approach.
Similar to bus transit networks, operating transit services with minimum energy consumption

is a challenging problem in public commuter services, such as ride-sharing, car-sharing, and car-
pooling. Chen et al. [9], Korkas et al. [27], and Hulagu et al. [21] apply various approaches to
schedule vehicles for commuters and to assign electric vehicles for charging. Chen et al. [9] map
the road network using graph theory and schedule the vehicles using quadratic programming.
Korkas et al. [27] propose a charging scheduling algorithm for dynamic transit vehicles using
multi-modal approximate dynamic programming. Hulagu et al. [21] solve the electric-vehicle
scheduling problem for dynamic transit vehicles using integer programming. These approaches are
applicable to dynamic transit environments, where there is no fixed schedule and time constraints
are flexible to a certain extent; on the other hand, we focus on the problem of assigning transit
trips to a mixed-fleet of vehicles without altering the fixed transit schedule.

10 DISCUSSION AND CONCLUSION
We presented a framework for the data-driven prediction and optimization of the energy use of
electric and internal-combustion vehicles, which we evaluated on real-world data collected from
the transit fleet of CARTA, the public transit agency of Chattanooga, TN. Our results show that
it is possible to collect, aggregate, and process heterogeneous transit data effectively. We found
that generally, artificial neural networks perform best for predicting energy use. For both diesel
and electric buses, we achieve best results using 21 predictor variables: travel distance, 14 road-
type features, elevation change, 3 weather features, and 2 traffic features. Further, we found that
relative prediction error is lower for longer trips, which facilitates the long-term planning of transit
operations. We also studied the problem of minimizing energy costs through assigning vehicles to
fixed-route transit trips. Although this problem is challenging computationally, we demonstrated
that our heuristic and meta-heuristic algorithms scale well and provide near optimal solutions.
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