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. Average no.
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Fig. 3: TN’s roadway network (blue), interstate highway (yellow), and potential
locations of responders (red vehicles).

(-Freezing+Heawy+NotLight+We:

Fig. 2: Randomly selected road segments for 4-hour time For more information, please visit: Contact information:
windows in April 2019. Each pixel in the matrix denotes tn.statresp.ai hiba.baroud@vanderbilt.edu
the presence (white) or absence (black) of an accident. Nashville.statresp.ai abhishek.dubey@vanderbilt.edu
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