
Science of Computer Programming 106 (2015) 3–29
Contents lists available at ScienceDirect

Science of Computer Programming

www.elsevier.com/locate/scico

DREMS ML: A wide spectrum architecture design language for 

distributed computing platforms ✩

Daniel Balasubramanian, Abhishek Dubey, William Otte, Tihamer
Levendovszky, Aniruddha Gokhale, Pranav Kumar, William Emfinger, 
Gabor Karsai ∗

Institute for Software-Integrated Systems, Dept. of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37212, 
USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 April 2013
Received in revised form 2 April 2015
Accepted 3 April 2015
Available online 11 April 2015

Keywords:
Architecture description language
Model-driven development
Fractionated spacecraft

Complex sensing, processing and control applications running on distributed platforms are 
difficult to design, develop, analyze, integrate, deploy and operate, especially if resource 
constraints, fault tolerance and security issues are to be addressed. While technology 
exists today for engineering distributed, real-time component-based applications, many 
problems remain unsolved by existing tools. Model-driven development techniques are 
powerful, but there are very few existing and complete tool chains that offer an end-to-
end solution to developers, from design to deployment. There is a need for an integrated 
model-driven development environment that addresses all phases of application lifecycle 
including design, development, verification, analysis, integration, deployment, operation 
and maintenance, with supporting automation in every phase. Arguably, a centerpiece 
of such a model-driven environment is the modeling language. To that end, this paper 
presents a wide-spectrum architecture design language called DREMS ML that itself is 
an integrated collection of individual domain-specific sub-languages. We claim that the 
language promotes “correct-by-construction” software development and integration by 
supporting each individual phase of the application lifecycle. Using a case study, we 
demonstrate how the design of DREMS ML impacts the development of embedded systems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Today’s large-scale distributed real-time embedded systems are enormously complex and there is an ever-increasing 
need for engineering tools to support their design, development, integration, deployment, operation, and maintenance. Of-
ten these systems are running on a mobile distributed platform with wireless connectivity. Such platforms are expected 
to host many different applications running side-by-side, possibly in different security domains. The platform is highly 
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resource-constrained thus resource management is an issue. Applications are often mission-critical and the system is ex-
pected to provide some guaranteed level of service in all situations, hence fault tolerance is a requirement. As an example 
one can consider a swarm of UAVs that act as a sensor network with in-network processing (while also flying in formation) 
or a fractionated spacecraft.

The DARPA System F6 program1 was concerned with developing a cluster of small, independent spacecraft modules that 
interact wirelessly to maintain coordinated flight and support the functions usually performed by a monolithic satellite. This 
hardware platform is considered a reusable resource, a ‘global space commons’, on which various distributed software appli-
cations can be deployed and executed such that they share cluster resources. For a variety of reasons, many challenges arise 
in hosting these applications so that they can deliver services with the expected level of quality. For instance, it is expected 
that multiple organizations and users whose diverse software applications have varying demands for computational and 
communication resources are to be supported on this distributed hardware which can experience highly fluctuating connec-
tivity. Moreover, the success of every mission depends on the capability of autonomous fault management, the delivery of 
desired real-time services and the availability of separate domains and levels of security.

To support these needs, we have developed an architecture called Distributed Real-Time Managed System (DREMS) [1], 
and its core, the Information Architecture Platform (IAP) for F6 that comprises (i) a novel operating system, (ii) a mid-
dleware layer that supports different communication-interaction patterns including request-response and publish/subscribe, 
and (iii) a component model that is used to develop DREMS applications [2,3]. Note that an entire F6 cluster of satellites 
is considered an open (hardware) platform whose services are available through the software platform (IAP) to applications 
developed by various customers. In this sense it is similar to a cloud-computing platform that follows a ‘Platform as a 
Service’ model.

The architecture provides first class support for multiple levels of security (MLS) that is enforced by the operating system 
kernel, the core ingredient of the Trusted Computing Base (TCB). Multi-level fault management is also supported by the IAP, 
with different functions, such as detection, mitigation, recovery distributed across the architecture.

Despite the elaborate and elegant runtime architecture to support DREMS applications, developers face a number of 
complex inherent and accidental challenges in constructing their applications. The inherent challenges pervade all phases 
of the application lifecycle, including design, development, deployment, resource scheduling, security provisioning, veri-
fication, determining the right testing strategies, runtime resource and fault management, and dealing with evolution in 
requirements and maintenance. The accidental challenges stem from the mundane and error prone activities of composing 
application components, providing the glue code to interact with the middleware capabilities, deploying the applications 
on the resources of the cluster, configuring the resources according to the partition schedule, provisioning monitoring and 
fault detection capabilities, testing, and dealing with all these complexities when iterating over the development cycle due 
to changes in requirements [4].

Clearly, there is a need for tools that application developers can use to handle all these challenges. Although a variety of 
tools that handle individual aspects of the problem space exist, such a disparate and disconnected tooling capability is not 
desired for a number of reasons. First, every different tool implies a learning curve on the part of developers and having to 
deal with the vagaries of individual tools. Second, the developers are now responsible for connecting these disparate tools 
into a tool chain requiring a number of transformations from the output of one tool to another. While these challenges 
are predominantly accidental, a more serious challenge stems from the fact that most of the existing tools do not provide 
domain-specific architectural reasoning capabilities desired for the IAP.

Architectural description languages, such as the Architecture Analysis and Design Language (AADL) [5,6], OMG SysML 
[7,8], and OMG MARTE profile for UML [9], are geared towards addressing the problem of disconnected and disparate 
tooling. Architecture description languages enable the proper decomposition of the system into manageable parts with 
well-defined interfaces (and thus contracts) between them, which ease system integration problems. Overall, an architectural 
model defined in these languages helps to capture in a single place details about the system’s requirements, architecture 
and implementation details. A significant advantage for developers is that they can generate a variety of artifacts: analytical 
models to conduct timing, reliability, security, performance, etc. analysis from a single source. When language capabilities 
are offered in the context of a model-driven engineering process, particularly in the form of model-integrated computing 
(MIC) [10], application developers can validate their system using domain-specific artifacts that promote the realization of 
systems that are “correct-by-construction”, and utilize the model transformation capabilities of MIC that can automate most 
of the mundane, accidental complexities faced by developers.

This paper presents DREMS modeling language (ML), which is an architecture description language (ADL) and its associ-
ated tooling. DREMS ML is a “wide spectrum” ADL because it provides a single source for DREMS application developers and 
the system integrator to address all the inherent and accidental challenges described above in realizing DREMS applications. 
Our recent publications describing DREMS ML [11] have focused on showing how it helps developers use the underlying 
component abstractions, configure the components and deploy applications that are composed of interacting components. 
Moreover, the focus of these papers was to describe the language in terms of its support for reusability, property configura-
tion at various levels and integration with textual languages. The key topics we cover in this paper are the following:

1 F6 stands for ‘Future, Fast, Flexible, Fractionated, Free-Flying spacecraft’.
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Fig. 1. Information architecture platform.

• We briefly review the main features of the IAP with a focus on the software component model. Our aim here is to 
highlight the development lifecycle of DREMS applications that influences the design of the DREMS ML.

• We present the design of DREMS ML including all the sub-languages it provides that address the inherent challenges in 
the different phases of an application’s lifecycle.

• We illustrate how the language can be used throughout various system development activities.
• We show through a case study how DREMS ML is used to develop applications and evaluate how the design of DREMS 

ML addresses the challenges.

The rest of this paper is organized as follows: Section 2 provides an overview of the IAP, Section 3 delves into the 
details of DREMS ML, articulating how it addresses the inherent and accidental complexities faced by developers; Section 4
describes the development activities supported by DREMS ML. Section 6 describes related research and compares it to 
DREMS ML; Section 5 evaluates the DREMS ML design in the context of a use case; and finally Section 7 offers concluding 
remarks alluding to future work in this area.

2. The DREMS information architecture platform

In this section, we briefly present the DREMS Information Architecture Platform (IAP), which is the run-time software 
platform and framework for System F6. IAP also offers a component model [2,3], which we also describe.

The IAP has a layered architecture [2] (shown in Fig. 1, for a single host) that comprises a novel operating system 
(DREMS OS), a modified and extended Linux kernel, a middleware layer(DREMS ORB) and the component-based applications. 
Instead of traditional processes, DREMS executes applications in the context of actors. Actors are temporally and spatially 
isolated processes that are extended in the following ways. (i) They are unique identity across multiple hosts, (ii) can be 
migrated from one host to another, and (iii) can be persisted and restored. The operating system provides primitives for 
concurrency, synchronization, file operations and secure information flows among actors and hosts; it also enforces the 
temporal and spatial separation of actors, and resource management policies. The middleware provides higher-level services 
supporting request/response and publish/subscribe interactions for distributed software.

A group of one or more actors deployed together to work collaboratively forms an Application and are called Applica-
tion actors. One application may be split across application actors potentially distributed across on different hosts. Platform 
actors are actors that provide system-level services, such as system management, component deployment, and fault man-
agement.

2.1. Component model

The component model (DREMS COM) facilitates the creation of software applications from modular and reusable com-
ponents that are deployed in the distributed system. Components are the basic units of composition for creating distributed 
software applications on the IAP. Components are hosted inside containers, the portion of the component middleware re-
sponsible for managing the lifecycle of component instances. Actors (and thus applications) are constructed from interacting
components, and all synchronization and data exchange among components happens through interactions. The component 
model specifies the execution semantics of a component, the interaction semantics between any two components and the 
interaction patterns between the component and the services provided by the framework to manage the life cycle of the 
component.

2.1.1. Interaction
Fig. 2b shows the different communication and interaction patterns that are currently supported by the DREMS middle-

ware. All data exchanged in these patterns are strongly typed. These patterns can be grouped into two categories:
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Fig. 2. Component (left) and interaction patterns (right).

Table 1
Communication patterns that can be realized using the available extended ports.

Pattern Scope Description

1. Asynchronous remote method invoca-
tion

Point to point Client component with receptacle makes the call but does not block waiting for a 
reply from the server. The reply from the server is handled as a separate component 
operation on the client component.

2. Synchronous remote method invoca-
tion

Point to point Client component with receptacle makes the call and is blocked while waiting for a 
reply from the server.

3. Stateless Data publisher and pull sub-
scription (Event Publisher and Read or 
Get Subscriber)

Group Publish 
Subscribe

An event can be published and received by a number of subscribers. A new publica-
tion replaces any old existing sample of the data in the buffers. The subscribers are 
responsible for polling the middleware periodically for new events.

4. Stateful Data publisher and pull sub-
scription (State Publisher and Read or 
Get Subscriber)

Group Publish 
Subscribe

The publisher controls whether a new instance (distinguished by a key field) of the 
topic is created or whether the value of an existing instance is updated. The pub-
lisher can also control whether an existing instance is completely removed from the 
distributed system. The subscriber is responsible for polling the middleware for up-
dated instances.

5. Stateless Data publisher and push 
subscription (Event publisher and Push 
Consumer)

Group Publish 
Subscribe

The publication side in this pattern is similar to item 3 above, but a callback (invo-
cation of a component operation) is made by the middleware to the subscriber when 
new data is available.

6. Stateful Data publisher and push sub-
scription (State Publisher and State No-
tify Subscriber)

Group Publish 
Subscribe

The publication side in this pattern is similar to item 4 above, but a callback (invo-
cation of a component operation) is made by the middleware to the subscriber when 
new data is available. A component can also control if it receives an invocation on a 
separate operation if the stateful publisher changes the lifecycle of a topic instance. 
This is typically used to indicate the ingress or an egress activity from a group of 
publishers and subscribers.

• Group Publish-Subscribe: A publisher is a point of data production and a subscriber is a consumer of data. This is a 
group interaction pattern, wherein multiple publishers and subscribers communicate within a specified ‘domain’ over 
a specified ‘topic name’. All data exchanged between a publisher and a subscriber can be either stateful (i.e. there are 
different instances of the data) or stateless, a.k.a. events (i.e. there is only one instance of the data). Events are like 
singleton classes where there is only one instance of the class, but the value of the data members can change. Stateful 
data implies that there can be different object instances of the topic with a different value assigned to each instance. 
These interactions are specified in the OMG Data Distribution Services standard [12].

• Point to point: A point to point interaction is between two components; one client (that has a receptacle) and the other 
server (that provides facet). Facets and receptacles are typed with an interface that defines a collection of methods. 
A facet port (of a server) is attached to the implementation of the methods defined in the interface and it services the 
requests issued through a receptacle (of the same type) of another component (a client) for these interface methods.

Table 1 lists the communication patterns that can be realized using the extended ports that are currently part of the 
platform. Though the interaction semantics of these ports is pre-specified, a middleware framework can choose multiple im-
plementations for them. For example, synchronous call/return and asynchronous messaging can be supported using OMG’s 
CORBA infrastructure while the publish/subscribe mechanism can be supported using OMG DDS. Consequently, the DREMS 
COM implementation decouples the transport mechanism from the structural artifacts of a component by using the notion of 
connectors [13]. A connector is a pluggable unit of container functionality; they are similar to components in that they have 
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Fig. 3. The component scheduler.

a well defined interface, but are entirely generated or implemented by the component middleware. Connectors are deployed 
much like components, and serve as the interface between a component and the underlying communications middleware 
or other container services. This design choice also enables the extension of available interaction patterns by allowing the 
creation of new extended ports without requiring changes to key portions of the component model implementation.

2.1.2. Component architecture
Fig. 2a provides an overview of the component model. Only the business logic of the component needs to be manually 

written, the rest of the architecture can be achieved by configuring the services provided by DREMS.
While the execution semantics are controlled by the component executor, i.e. the business logic of the component, the 

interaction patterns are realized via extended ports which support many distributed interactions patterns that are commonly 
used. These ports are called extended because unlike traditional single interface ports, these ports provide a collection of 
semantically related interfaces that are used together.

Fig. 2 shows a number of extended ports – each of them represent a requested middleware service. It also shows the 
service interaction patterns that can be realized by using the service extended ports. The service patterns are used to in-
teract with the framework managing the component and can also be used to support periodic and aperiodic time-based 
triggers that initiate component operations. Additionally, they can support state variables: component attributes with (lim-
ited) history, which are often needed in software interacting with physical phenomena. These interaction patterns can be 
also used to support fault management and component life cycle control, i.e. activating or shutting down a component.

As shown in Fig. 2 functions associated with all extended ports, both service and communication, can be grouped into 
two categories (a) component [provided] operations and (b) framework [provided] operations. It is key to state the difference 
between two.

The component operations are written by the component developers and provide implementations that state the com-
ponent’s response to either a service interaction (including a timer expiration, see container services) or a communication 
interaction. These operations have access to the component state directly and can alter it. The framework provided opera-
tions are called from within a component operation.

The framework operations typically do not block and return immediately, except in two cases: (a) synchronous remote 
method invocation and (b) a get or a waiting read performed by a subscriber. In both cases, the framework operation call 
blocks until either a response is available or a timeout occurs. To specify the timeout, all framework operations are marked 
with a timeout parameter. This parameter is specified and configured using the modeling language.

Besides the extended ports, there are three container services: (i) Lifecycle Control, (ii) Fault Manager, and (iii) Timer. 
While lifecycle control is responsible for delivering lifecycle events such as the initialization and shutdown, Fault Manager 
handles fault-related events. The timer service is a periodic timer that can be configured to periodically invoke a component 
operation. It is a completely separate concept from the service/system timeouts.

Fig. 3 shows the interactions between the framework and the component executor i.e. the business logic. Component 
operations invoked by the framework are queued in a component operation queue. By default, the size of this queue is only 
bounded by available memory in the actor. In the event that a lower upper bound on the queue size is specified, any failure 
to insert an operation into the queue would be indicated to the Fault Manager, and if appropriate throwing an exception to 
the client that initiated the operation. The framework issued enqueue command returns immediately to the framework. The 
component operation queue selects the next component operation to be executed based on the a configurable scheduling 
policy. Currently, we support two policies: Priority First in First Out, and Earliest Deadline First. Both of these policies 
are non-preemptive i.e. an operation once started cannot be interrupted. However, it is possible to monitor for deadline 
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Fig. 4. Scheduling of component operations.

violation for the operation. The fault management mitigation action to be issued upon deadline violation is a subject of 
ongoing research and implementation; possible mitigation strategies might include (1) indicating an exceptional condition 
to the client (in the case of AMI/RMI), (2) failing over to a replica, (3) restarting the actor entirely, or (4) an application 
specific response supplied by the application developer.

To support these scheduling policies two attributes for each component operation must be configured: deadline (i.e. 
anticipated worst-case execution time), and an unsigned integer priority. For normal operations priorities must fall within a
closed interval (e.g. [0..99]), and while priorities greater than the larger value of the interval are possible, they are reserved 
for component operations used to implement the lifecycle and fault management service interaction patterns (see Fig. 2a).

Fig. 4 depicts the semantics of component scheduling from the perspective of the Framework (Fig. 3). The figure uses 
hierarchy only as a syntactic convenience to omit drawing transitions to/from every state contained by a higher-level state; 
otherwise, our notation has the same semantics as a timed-automata. The framework takes an operation from the Compo-
nent Operation Queue (transition from the state WaitinQueue). Then the execution of component operation takes place. If 
executing the operation takes more time than the specified timeout, the framework aborts the execution of the operation. 
It may involve an outgoing invocation (network communication) or sending response to a network communication query. 
During this whole process if a timeout expires on an operation in the operation queue (this timeout is different from the 
one for the operation execution), the framework handles it.

2.2. Task scheduling

In this section, we briefly summarize the scheduling services provided by DREMS. It groups tasks into different criticality 
levels: (a) Critical tasks are those tasks which are required for system and mission management; (b) Application tasks 
perform mission-specific, non-critical work; (c) Best Effort tasks are those low priority tasks that are scheduled only when 
there are no runnable tasks from the previous two categories.

The DREMS OS scheduler provides the ability to manage computation time for tasks at the three different criticality 
levels: Critical, Application and Best Effort. The Critical tasks provide kernel level services and system management services. 
These task will be scheduled based on their priority whenever they are ready. Application tasks are mission specific and are 
isolated from each other. These tasks are constrained by temporal partitioning and can be preempted by tasks of the Critical
level. Finally, Best Effort tasks are executed whenever no tasks of any higher criticality level are available.

Note that actors in an application can have different criticality levels, but all tasks associated with an actor must have 
the same criticality level, i.e. an actor cannot have both Critical tasks and Application tasks.

Therefore, the scheduling policy must be configured for the Application Actors. Their temporal isolation is provided via 
ARINC-653 [14] style partitions – a periodically repeating fixed interval of the CPU’s time exclusively assigned to a group 
of cooperating actors of the same application. Fig. 5 depicts the partition scheduler as a stopwatch automaton [15] from 
a partition’s perspective. A partition can be in an active or inactive state. As described in Section 3.2.9, partitions have 
an associated period and duration such that each partition is run for the length of its duration every time an amount 
of time equal to its period elapses. In order to find a schedule that satisfies the period and duration constraints of all 
partitions, a constraint satisfaction problem [16] is formulated such that a solution to this problem assigns to each partition 
a starting and ending time relative to a calculated hyperperiod. The hyperperiod is the smallest interval of time after which 
the periodic patterns of all the tasks is repeated. Because the period of the scheduling is the hyperperiod, the time within 
the current hyperperiod is equal to the system clock (sc) modulo the hyperperiod. Offseti marks the start of partitioni within 
the hyperperiod.
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Fig. 5. Partition scheduling.

Fig. 6. DREMS application development workflow and roles.

3. DREMS ML architecture design language

3.1. Rationale for the design of DREMS ML

This section describes the DREMS ML ADL.2 Our design of DREMS ML is based on the argument that an ADL has to 
be expressive enough to support all developmental activities shown in Fig. 6 that ultimately produce deployable software 
products.

As Fig. 6 shows, the component implementor creates individual components, including the definition of their interfaces 
and their business logic. The application developer is responsible for creating applications using these components. The 
system integrator then combines multiple applications to create a deployment package that is run on the target system. 
In order for the system integrator to perform verification and validation tasks, such as security analysis (Section 4.3.2) and 
scheduling analysis (Section 4.3.5), the application models must contain all information relevant to each analysis.

In other words, models have to represent interfaces, the components and the architecture of applications, together with 
details about the software platform and how applications are to be deployed on the platform. What an ADL should not
capture is the internal behavior of the components – this is best left in the hands of skilled developers. An example internal 
behavior could be the algorithm that a component uses to calculate data that is then sent to other components.

When a component-based development process is followed as in DREMS, the platform has to clearly delineate what a 
component is. We argue that a component model (supported and enforced by a run-time framework) is essential. When the 
ADL is used to model an application in terms of interacting components, the designer has to clearly understand what the 
assembly of components means and how it works.

Another aspect of component-based development is that of deployment: at run-time, applications are created on-the-fly 
by activating and ‘wiring up’ components. Information needed for such deployment activities must be generated from the 
ADL and processed by a special platform component: a deployment and configuration engine that manages all applications 
and their components running on the platform. Finally, the ADL also serves as a system integration tool. For complex 
systems, e.g. the complete avionics suite of an aircraft, applications are developed in parallel, by different organizations. 

2 The DREMS package, which contains the language and examples, is available at https://drems.isis.vanderbilt.edu/.

https://drems.isis.vanderbilt.edu/
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Fig. 7. Workflow showing the automatically generated artifacts and their use in the development process.

A distinct system integrator has to integrate all the applications into a coherent software package that is then deployed. 
Hence, the ADL should be capable of modeling the complete set of distributed applications, which allows the integrator to 
(1) make admittance decisions that ensure that the resources required by all applications will be available on the system, 
and (2) perform the ‘systems engineering’ by enabling various interactions (e.g. data flows) among applications.

We call such ADLs wide spectrum, as they support a wide variety of development activities. Each of the considerations 
mentioned above are incorporated in the design of DREMS ML and explained in the rest of this section.

Before delving into the details of the modeling language, we provide an overview of what is deployed onto the runtime 
system (the IAP) and how the modeling language fits in. Fig. 7 shows a high-level view of the overall workflow. Three 
items are generated directly from a model: code, build system files and a deployment plan. The build system files describe 
how to compile the source files into the executable binaries that are eventually deployed onto the system. The compilable 
code consists of IDL that describes the component interfaces, which is translated into C++ code. This is combined with 
the component business logic (i.e., the internal implementation) to produce the executable binaries. The business logic 
and external libraries are not directly subject to the timing analysis described in Section 4.3.5. Instead, users describe an 
abstraction of the business logic’s timing behavior inside the model, and this abstraction is analyzed for properties such as 
deadline violations and response times; Section 4.3.5 provides details.

The final product deployed onto the IAP consists of two items: a package of binary executables and a deployment plan. The 
deployment plan (physically: an XML file) contains a declarative description of the software components implemented in the 
binary executables, along with a list of which components to instantiate, where those components should be instantiated 
and the communication connections that must be established between the components.

3.2. Design of DREMS ML

The DREMS ML is a wide spectrum modeling language that supports the entire development process. Below we describe 
the design of DREMS ML and show how it supports all the phases of the development lifecycle. In doing so it describes the 
design of the different sub-languages of DREMS ML that were designed to address the stages of the process shown in Fig. 6. 
For each sub-language we describe (1) what is being modeled, (2) the motivation for including it in the ADL, and (3) what 
it contributes to in the final product of the development process. The sub-languages of the DREMS ML and the metamodel 
of one of these sub-languages – in this case modeling of an application – is shown in Fig. 8. The syntax and semantics of 
the DREMS ML language are described using the MetaGME Language [17].

Shown in the right pane of the screenshot are all the sub-languages supported by the DREMS ML. These languages are 
numbered and this numbering effectively follows the application development lifecycle phases shown in Fig. 6. As seen 
in the figure, a single overall modeling capability covers all the stages of the lifecycle, which is the reason for its “wide 
spectrum” property. The rest of this section delves into the design and justification for each of these sub-languages.

3.2.1. Initial step in modeling
Since the DREMS ML supports a step-by-step approach to DREMS application design and deployment, the language 

must provide a starting point for the modeling phase. This capability appears in the sub-language numbered zero and its 
metamodel is shown in Fig. 9. The sub-language provides three top level entry points for the application designer and 
integrator: everything that is related with software, hardware and the system itself. The decision to separate these three 
modeling capabilities is driven by a desire to separate concerns and because different parties may be responsible for defining 
these three independent artifacts.

3.2.2. Data types and interface definitions
The first phase of the application lifecycle starts with component definitions and their implementations. In order to 

do this, one must first define the data types for all the component attributes and interfaces it supports. Thus, the next 
sub-language pertains to modeling the data types whose meta model is depicted in Fig. 10.
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Fig. 8. Overall structure of the DREMS ML as a MetaModel modeled in GME.

Fig. 9. DREMS ML-based modeling: the starting point.

The sub-language for data types and interface definitions is used to model: (1) the data types that components use on 
their interfaces, and (2) the interfaces provided and used by components. This sub-language is present in the modeling 
language because in addition to primitive data types defined by OMG standards, applications can also have user-defined 
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Fig. 10. DREMS ML: defining IDL data types.

data types. These user-defined types include: enumerations, sequences (both unbounded and bounded), arrays,3 structures 
(which can contain any other primitive or user defined type), unions, and typedefs (named types).

Interfaces are named collections of method signatures that can use both built-in and user-defined data types for the pa-
rameters. This part of the modeling language provides a central “repository” where interfaces and data types can be defined 
and then referenced throughout multiple applications. Recall that at a high level, component communication interactions fall 
into one of two categories: (a) point to point interactions, and (b) publish-subscribe interactions. Point to point interactions 
are achieved using call-return semantics; the collection of methods that can be called is referred to as an interface.

The sub-language allows modeling the IDL types using both graphical and textual notation. The syntax of the textual 
description is checked and enforced by including an add-on4 to the modeling language that parses the user-written data 
types and interfaces, and alerts the user to any syntactical errors. From this sub-language, IDL code containing syntacti-
cally correct data types and interfaces is generated. This IDL is generated by a model interpreter, a program that can be 
invoked from inside the modeling environment and access models using APIs provided by the modeling environment. This 
is straightforward because the model elements contain syntactically correct IDL code (as described above).

3.2.3. Topic definitions
Recall that the group publish-subscribe set of component interactions is performed by the exchange of data, as opposed 

to the invocation of methods used by point-to-point interactions: a component “publishes” data that is consumed by some 
number of components that “subscribe” to that data. All data exchanged using the publish-subscribe interaction patterns 
is identified using topics. A topic provides an identifier that uniquely identifies some data items within a publish-subscribe 
domain. More formally, a topic is a tuple < x, y >, where x is a unique name, and y is a structure data type. Note that 
while this definition allows a single data type to be associated with multiple identifiers, a pair of publish/subscribe ports 
will only interact if they are assigned the same topic: the same data type alone is not sufficient.

A topic’s data type is specified as a data structure using the data types modeling language. Data structures that are used 
as the data type of a topic can be annotated by keys which are used to describe different instances of the same topic. The 
topic definition sub-language then uses references to data structures defined in the data types modeling language to define 
the topics available for publish/subscribe interactions as shown in an example in Fig. 11. From the topic sub-language, 
configuration files that inform the middleware about the allowed topics are produced.

3 Arrays are fixed size containers, while sequences are variable size containers.
4 An add-on is an interactive tool: an executable extension to the graphical modeling environment that is activated when a specific editing operation is 

invoked.
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Fig. 11. Example topic definition. References (right-side) to data structures (left-side) define topics.

Fig. 12. DREMS ML-based modeling: defining the components.

3.2.4. Component and assembly definitions
Having modeled the data types and topic definitions, the modeler can proceed to defining the components and their 

implementations. The sub-language that enables component modeling is shown in Fig. 12. The language is designed in a 
way to faithfully capture the structure and semantics of a software component. Recall that component definitions represent 
units of functionality that interact with one another through pre-defined interaction patterns and are the basic building 
block of applications. This sub-language is one of the core parts of DREMS ML: component definitions define the abstract 
units of functionality used by applications. From a component definition model, IDL code that describes the ports, interfaces 
and method properties of each component is generated.

A component definition consists of the interfaces it provides and requires, the publisher and consumer ports it contains, 
and its exposed attributes. For this reason all these artifacts are contained within the “Component” model artifact. For each 
interface method provided by a component, a set of properties are specified, including the worst-case response time, the 
deadline and whether the deadline is hard (strict) or soft (flexible).

Note that the definition of a component is different from its implementation (described next). This allows the same 
unit of functionality (the component definition) to be implemented in multiple ways. Applications can then choose which 
implementation of a component definition they wish to use.

A component assembly is a group of component definitions that are packaged together to provide a functionality as a 
composite of simpler functions.

3.2.5. Component implementations
A component implementation represents a particular implementation of a component definition. Recall that a compo-

nent definition can contain interfaces, which are a collection of methods that are used or provided by the component, 
as well as DDS ports that the component uses to publish data for other components or subscribe to data published by 
other components. Each component definition can be implemented in multiple ways, and an application may use multiple 
implementations of the same component definition.
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Fig. 13. DREMS ML-based modeling: defining the component implementations.

Fig. 14. A component implementation overriding the properties of a port of its component definition.

The component implementation sub-language shown in Fig. 13 is present so that users can specify multiple ways of 
implementing a component definition and override properties of that component definition. From a component implemen-
tation model, IDL code describing the implementation is generated.

A component implementation in the modeling language contains a collection of artifacts, which represent required de-
pendencies the implementation needs at runtime, such as shared libraries (i.e., .so files) and confirmation files. A component 
implementation can also contain timers, which are used by the implementation to invoke component operations on itself. 
An implementation may change the properties of ports contained in the component definition it implements.

Fig. 14 shows an example of how the properties of a port can be overridden5 in an implementation. The properties that 
can be overridden are the deadline, timeout and priority for individual functions contained (used) by the port. The figure
depicts an implementation of a component definition named OnDemandReceiver, which is one of the same component 
definitions described later in Section 5. This component definition contains one uses port named read_full_data, which states 
that the component uses the PositionServer interface, which is shown in Fig. 27. As shown in Fig. 27, the PositionServer
interface has one method named getPosition. The component implementation shown in Fig. 14 overrides the properties of 
this method on this implementation by connecting the port to an InterfacePropertiesOverride element (shown on the right 
side of the figure) and setting the desired values of the method attributes there.

The bottom part of Fig. 14 shows that this implementation has overridden the values for this method’s deadline, timeout 
and priority. The deadline and priority attributes affect the operations on the component, and the timeout affects the 
framework operation as discussed in previous sections. The user interface shown at the bottom of Fig. 14 was implemented 
as an add-on (see Section 3.2.2 for a brief definition) to the modeling environment for convenient specification.

5 While component definition may provide an expectation of function properties, the implementation specifies the actual values.
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Fig. 15. DREMS ML-based modeling: modeling the application.

3.2.6. Applications
The next phase in the application lifecycle is defining the applications using the components and their implementations 

that were defined in the earlier phase. An application consists of a group of communicating components. The application 
sub-language shown in Fig. 15 defines applications by combining elements from the sub-languages above and extending 
them with additional information. An application consists of one or more component definitions, possibly grouped into 
assemblies, each of which is associated with a particular implementation of that component definition. The component def-
initions are then assigned to actors, which are similar to operating system processes and form the basic unit for scheduling 
in the system.

The application sub-language also defines the connections between the ports of components in that application. Every 
uses port of a component is connected to a provides port of some component. The publisher and subscriber ports of an ap-
plication have topics assigned, which ensures that consumer ports using a certain topic will receive data from any publisher 
ports using that topic.

From an application model, a deployment plan is generated. A deployment plan is a configuration file that describes the 
locations of all the files and artifacts needed to launch the application. This deployment plan is used by a special actor 
called the Deployment Manager to launch the actor and to configure the components and the middleware within that actor.

3.2.7. Platform definitions
Recall that at the top level, the DREMS ML allows a different set of modeler to define the characteristics of the platform 

used by the system The platform definition sub-language shown in Fig. 16 describes the physical hardware devices that can 
be a part of the target system. The System F6 IAP is aimed at space systems, so these models describe both in-space modules 
and ground modules that are to communicate with space modules. The main features captured by this sub-language are the 
device, network and external network interfaces. Because the underlying software infrastructure has stringent requirements 
about the networks and devices which can be used, these networks and devices must be explicitly modeled. These models 
are then reused in the platform configuration models, as described below.

Fig. 17 shows an example model with two modules (the left side of the figure) and the interfaces they contain (the right 
side of the figure).

3.2.8. Platform configurations
The preceding section described the platform definition sub-language, which defines the devices that may be available 

during a mission. Because missions are designed to operate in a dynamic environment where both software and hardware 
faults may occur, all devices may not be available throughout an entire mission. Devices can fail, and both planned and 
unplanned network outages may occur. Additionally, the configuration of the devices may change over time: the network 
address of a network interface may change, or the interface may be assigned to a different network altogether.
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Fig. 16. DREMS ML-based modeling: modeling the platform.

Fig. 17. Example platform definition. The SatModule1 module has two network interfaces, and the SatModule2 module has two network interfaces and one 
device interface.

The platform configuration sub-language defines different configurations of modules and their interfaces. Each configura-
tion consists of a set of modules and the mapping of their network interfaces onto available networks, including a network 
address. This allows a platform configuration to describe the state of the physical system at a given point in time. From this 
description, a configuration file that can establish the network configuration for each platform configuration is generated 
that is used at software deployment time.

Fig. 18 shows a sample platform configuration that uses the modules defined in Fig. 17. The modules are proxies of the 
modules defined in the platform definition sub-language. Notice that the network and network address change between 
the configurations. Alternative configurations are specified statically in the modeling language, but the switch to a new 
configuration on the IAP runtime platform happens dynamically in response to events, such as a device failing.

3.2.9. Software packages
The software package sub-language shown in Fig. 19 describes three items: (1) the scheduling of the application’s ac-

tors, (2) the domains6 used by components for their publish and subscribe ports, and (3) the point-to-point interactions 

6 Domains are used to specify a region of the data space within which the publish subscribe interactions can be established.



D. Balasubramanian et al. / Science of Computer Programming 106 (2015) 3–29 17
Fig. 18. Two platform configurations. Only SatModule1 is present in the first configuration (left side), but both SatModule1 and SatModule2 are present in 
the second configuration.

Fig. 19. DREMS ML-based modeling: modeling the software package.

between ports in different applications. Actor scheduling is configurable within an application, and is therefore present in 
the modeling language. Actors are assigned to schedules in one of two ways: they can be explicitly assigned to a schedule’s 
temporal partition with a given period and duration,7 or they can be assigned so that the operating system schedules the 
actors using a ‘best effort’ approach. Best effort actors run in the unused slack time remaining after the actors running in 
the temporal partition(s) are executed.

For publish/subscribe, a domain for the publisher and subscriber ports of a component determines the scope in which 
produced data is visible. For point-to-point interactions connecting the point-to-point ports of components in different 
applications allows a component in one application to use the interfaces provided by a component in another application.

A software package model is reused in a software deployment model (described below), where the schedules are mapped 
onto hardware modules and the software domains are mapped onto real networks.

3.2.10. Software deployment
Recall that the final phase of application lifecycle is handled by the system integrator who decides how the software 

packages are configured and deployed. The software deployment sub-language shown in Fig. 20 describes how software 
packages (Section 3.2.9) are mapped onto cluster configurations (Section 3.2.8). This consists of a mapping from the sched-
ules (which describe how the actors of applications are scheduled) of a software package to the modules of a cluster 

7 Here we follow the ARINC-653 temporal partitioning model.
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Fig. 20. DREMS ML-based modeling: configuring the software package for deployment.

configuration on which those schedules should be run. This mapping assigns a set of actors to a hardware module. This 
sub-language also maps the publish/subscribe domains of a software package onto the networks available in a cluster 
configuration. This is used to concretely specify which network carries the publish/subscribe traffic generated by software 
components.

The software deployment process is supported in the modeling language with first class concepts for schedules, modules 
and the mapping between the two.

4. Developing systems with the DREMS ML

The development process of applications to be run on the IAP is similar to that of other embedded system applications: 
analysis, design, implementation, verification and testing; preferably in spiral progressions. The use of an ADL like DREMS 
ML helps in all these phases by allowing distributed development and integration of systems with specific support for 
following three key roles: component developers, application developers and system integrators. We describe these roles 
next.

4.1. Component developers

As described earlier, components are the basic units of software that can be composed together to build larger and 
more complex distributed software applications. Components are developed with respect to a specification and provide a 
small number of functionalities. Two different components built for the same specification can be used interchangeably. Part 
of a component developer’s primary task is to model component definitions, implementations and component assemblies 
and to specify runtime properties for the components. These runtime properties include expected resource requirements, 
expected security label constraints and the type of interactions supported by a component. To support these activities, the 
modeling environment provides automatic generation of the necessary build scripts and framework ‘glue’ code. The glue 
code includes:

• Data type and interface code.
• Communication stubs and skeletons.
• Placeholders for insertion of component executor or business logic code.

As a component developer creates tests that exercise their code, it is likely that both the model and code will both change 
as bugs are discovered and the implementation is refined. During this process, it is important that the code automatically 
generated by the modeling environment does not accidentally overwrite code that was manually added to previously gen-
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/ / Obtain a l l p a r t i t i o n s in a module
l e t g = s e l f . parts ( " P a r t i t i o n " ) in
/ / Compute u t i l i z a t i o n of a p a r t i t i o n as duration / period
l e t a l l =g . c o l l e c t ( oclAsType ( P a r t i t i o n ) . Duration /
oclAsType ( P a r t i t i o n ) . Period ) in
/ / Sum the u t i l i z a t i o n of a l l p a r t i t i o n s
l e t seq = a l l . oclAsType ( ocl : : Collection)−>asSequence ( ) in
l e t r e s u l t = seq−>i t e r a t e ( i ; sum : ocl : : Real =0|sum +
i . oclAsType ( ocl : : Real ) ) in
/ / To be schedulable , the t o t a l u t i l i z a t i o n should be <=1
r e s u l t <= 1

Listing 1: OCL constraint to ensure valid CPU utilization.

erated code. To ensure this does not happen, special markers are automatically placed in the generated code to delineate 
where hand-written code should be placed and thus preserved by the code generator in subsequent runs.

4.2. Application developers

Applications are created by composing various components together, specifying the information flow, specifying resource 
and/or security constraints. An application developer does not have to write new code. They are able to use the tools to 
generate deployment plans for their application and run them in a test environment. The application developer role requires 
the modeling framework to support composing different component models received from different parties and combining 
them into a single model. This kind of model composition requires the tool to support some sanity checks to avoid duplicate 
type definitions and name clashes. These checks include ensuring that the different models do not define IDL data types 
with the same name. Once the models have been composed, the application developers can create test system deployment 
models to try out their applications. For this purpose, they have to use the system integration role, which is described next. 
The end-result of the application development process is a set of models, source code files (received along with component 
implementation), and tested and verified software libraries and artifacts.

4.3. System integrators

System integration is the phase that results in a verified configuration of all the software for a specific cluster config-
uration. The tasks of an integrator are to specify the application instances in the system, specify the resource limits for 
each application instance and specify the communication constraints i.e. the topics and domains8 being used. The system 
integrator also specifies the security labels at which all computing hardware and nodes will operate.

Based on these settings, a system integrator can perform a number of design constraint checks described in the following 
subsections. Once the model has been analyzed, the system integrator generates the application deployment plans and 
system configuration scripts for the test system. These are then used to deploy the test system and the test applications 
on the ground. Once verified, the deployment plan and software artifacts are packaged together for deployment in the 
production system.

4.3.1. Well-formedness checks
The modeling tools allow the system integrator to check that a model satisfies a set of constraints that are specified 

using the Object Constraint Language (OCL) [18], a standardized language for writing constraints on modeling languages. 
Listing 1 shows an example constraint written in OCL that checks whether a model satisfies the constraint that the CPU 
utilization of all components assigned to a partition is less than 1 (100%). These OCL constraints were developed as part of 
the modeling language and are included with it.

In addition to OCL constraints, the modeling language uses three additional analyses to ensure that models are semanti-
cally correct: security analysis, resource analysis and scheduling analysis. These are described presently.

4.3.2. Security analysis
The modeling language supports security analysis in the following way. MLS (multi-level security) labels can be placed 

on all component ports, actors and hardware modules. These MLS labels are linearly ordered hierarchical classification 
levels [19]. A label La is said to dominate another label Lb if the classification level of La is greater than or equal to the 
classification level of Lb , and we say that the dominance relationship holds between La and Lb . This dominance relationship 
is a partial order [20].

Our MLS policy states that information can flow only from lower to higher labels or between equal labels (according to 
the domination relation), e.g., a Secret actor for mission A can read Confidential or Secret data for mission A, but not Top 

8 A domain can be used to isolate the communication of different applications from each other.
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Fig. 21. A component implementation’s port and network profile.

Secret data for mission A or Secret data for mission B. Information cannot flow from higher to lower labels or between 
incomparable labels.

We developed and integrated an MLS label checking library into the modeling language which automatically checks that 
the information flows, specified by connections between the ports of components in the modeling language, satisfy the 
constraints of our MLS policy (i.e., that information can only flow from lower to higher labels or between equal labels). The 
modeling language uses this label checking library to perform a static security analysis before a system is deployed. The 
static security analysis ensures at design time that (1) all intended information flows are indeed allowed, and (2) unintended 
information flows are disallowed.

This complex label checking is an advantage over general purpose architecture description languages, which do not 
support security labels and checks on both component ports and hardware modules. Additionally, the underlying platform 
enforces the MLS policy at runtime, ensuring that the label constraints that were checked statically in the modeling language 
are also enforced during execution.

4.3.3. Network resource analysis
DREMS ML includes a network resource analysis tool that allows a user to validate whether the expected network usage 

requirements of their application will be satisfied at run-time by the platform. Users specify the network resources required 
by component ports and provided by node network links. As shown in Fig. 21, the network requirements of a component 
port are specified as time intervals of the form time, bandwidth, latency, where the time value is relative to the start of a 
system period. In the case of an orbiting cluster of satellites, this period would be the orbital period of the satellites and the 
specified bandwidth for a given interval would be constant until the next specified interval. Similarly, the latency is specified 
on component ports as the maximum allowable latency for port data transmission during that interval. A sequence of such 
network resource requirement intervals is defined as a network profile.

The developer can apply the same network profile specification to the nodes’ network. As shown in Fig. 22 and Fig. 23, on 
each network link, the developer specifies the network profile, for which the bandwidth specification indicates the minimum 
provided bandwidth over the interval, and the latency specification represents the maximum transmission latency incurred 
by traffic on that link. When the entire model is interpreted, the components’ node associations are resolved and each 
node’s components’ profiles are aggregated. Using the methods described in [21], we can convolve these aggregate profiles 
with the node’s link profile to determine (1) if the system can satisfy the network quality of service requirements of all the 
applications, (2) what are the remaining network resources, and (3) what network quality of service the applications will 
receive. All of this information is then reported back to the user in the form of a generated log file.
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Fig. 22. A node’s network link and associated network profile attribute.

Fig. 23. Zoomed-in view of the network profile in Fig. 22.

4.3.4. Scheduling analysis
Scheduling analysis is used to ensure that a valid schedule can be computed from the individual temporal partitions to 

which Actors are assigned. Recall that Actors are assigned to temporal partitions, each of which has a period and duration. 
The duration tells how long the Actor should execute, and the period tells how often the execution is repeated. For example, 
a partition with a period of 4 ms and a duration of 2 ms would execute for a total of 2 ms every 4 ms. Because an 
Application can consist of many Actors assigned to temporal partitions of different periods and durations, determining a 
repeating schedule for all temporal partitions that satisfies the period and duration requirements of each is a non-trivial 
task.

The scheduling analysis included with the modeling language computes a valid schedule by formulating a constraint 
satisfaction problem from the periodicity and duration requirements of all of the temporal partitions and providing this 
constraint satisfaction problem as input to an SMT solver [22]. If the solver finds a solution to this constraint problem, then 
this solution is parsed and stored inside the model. If a solution to the problem does not exist, the user is informed that 
the scheduling requirements of their temporal partitions cannot be satisfied.

4.3.5. Timing analysis of component operations
Components in DREMS communicate by requesting operations exposed through component interfaces. Component op-

eration requests are enqueued into a component message queue from which operations are serviced one at a time. Each 
component thread is scheduled in a temporally partitioned OS scheduling scheme. As a real-time system, the order in which 
component operations execute is important. Each operation has a deadline on its execution time. Schedulability analysis at 
design-time ensures that every component in a deployed application completes its operations without violating deadlines.
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Fig. 24. Component connected to two business logic elements.

Fig. 25. The business logic of the timer operation in Fig. 24.

In this regard, we have devised a Colored Petri Net-based [23] approach to modeling and analyzing component-based 
applications that we have integrated into DREMS ML. We assume a well-defined set of interaction semantics (such as the 
ones used by DREMS ML). DREMS ML captures the structural semantics of component-based applications in that a developer 
specifies properties such as (1) what a component is, (2) what the component ports are, (3) where each component is 
deployed, (4) what constitutes a process assembly. The business logic of each component operation is then written by an 
application developer after the modeling tools generate the necessary intermediate skeleton code for the various component 
operations. Our primary goal for this analysis was to be able to model these component operations within DREMS ML. In 
essence, the behavioral semantics of the component are captured by modeling the individual behaviors of the operations 
that each component would execute. Therefore, when a component A requests a remote operation on another component 
B, the request is enqueued on component B’s message queue. When the dispatching thread of component B is scheduled, 
this operation is dequeued from the message queue and component B is triggered into execution. When component B is 
executed, it simply executes the sequence of steps written inside the business logic of the operation. Therefore, by modeling 
this operational behavior and the structure of the application, we have sufficient information to simulate the hierarchical 
scheduling nature of DREMS.

Fig. 24 shows two business logic elements connected to a Sensor component. One of the elements connects to a com-
ponent timer and contains the behavior of the timer-triggered callback executed by the Sensor. Fig. 25 shows the on_timer
operation corresponding to the on_timer business logic callback function written by a developer. This operation has a pri-
ority of 60 and a deadline of 10 ms. Once the timer triggers, the Sensor component uses the Notification_Publisher port to 
publish on the Notification topic taking 8 ms. This publish operation occurs three times within the LOOP. This is a simple 
grammar-based representation of the business logic of the timer operation written by a developer.

Using model interpreters, this model is translated into a colored Petri net-based analysis model. The analysis model 
captures the structural and behavioral properties of all applications within the DREMS ML model. The places in this CPN 
model contain tokens representing the state of system variables such as the component message queue, component thread 
states, offsets on component timers, system timer clock and component interactions. The transitions in this CPN model 
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Fig. 26. SATNAV data types.

capture the nondeterministic set of events that can transpire in the simulation. This includes discrete events such as thread 
scheduling, thread blocking, operation requests and timer expiry. Using state space analysis techniques provided by the CPN 
Tools [24] tool suite, a bounded state space of operational behaviors is generated. User-defined queries can be generated 
from DREMS ML to verify system-level properties such as lack of deadline violations, deadlocks and bounded worst-case 
response times. This CPN-based analysis is described more fully in [25].

5. Evaluation

In this section, we will provide an evaluation of the DREMS Modeling Language through exploration of a simple but 
representative example from the F6 domain. This evaluation will be conducted along the development phases outlined in 
Section 4.

The Satellite Navigation Distribution Service (SATNAV) is a component application intended to demonstrate the salient 
details of the modeling language. SATNAV is intended to be a sub-application of, for example, a larger component application 
that calculates flight plans for the satellite to maintain cluster flight. This example has three key participants:

• Distributor: A component that collects readings from various sensors on the satellite bus that indicate the current 
position and velocity of the satellite. These readings are collated and published to interested consumers (receivers).

• Continuous Receiver: A component that is interested in all sensor updates published by the Distributor, and is thus 
provided with the full information read from the position sensors. This component consumes relatively more bandwidth 
than the On Demand Receiver (described below). Due to the increased bandwidth requirements, this component is most 
appropriately co-located on the same node as the distributor.

• On Demand Receiver: A component that may only be sporadically interested in new updates from the Distributor. This 
is intended to reduce the bandwidth requirements and thus only consumes the identifiers of sensors that have new 
data. When the component detects an update on a sensor it is interested in, it may call back on the distributor to 
obtain the full information.

The following subsections will describe the modeling and development of a system using this component application. 
The examples were created using the Generic Modeling Environment (GME) [26] configured to support DREMS ML. Note 
that in GME a model can have multiple aspects: visual views of the model that visualize selected subsets of the model 
elements.

5.1. Component development

This section will describe the modeling language and implementation process from the perspective of the component 
developer through the following phases: data type and interface definition, topic definition, component and assembly defi-
nition, and finally component implementation.

5.1.1. Data types and interface definitions
SATNAV has two key data types that are essential to its operation: a data type describing the full readings obtained 

from a sensor, and a data type that simply contains an identifier for a particular sensor. These are modelled by inserting 
a struct element into the model, shown in Fig. 26, showing two structs: Identity, intended to identify a single sensor, 
and Position, intended to describe a reading from a single sensor. This element is populated through an IDL editor in which 
these structures may be described. The //@key comment following the name field of the Position structure indicates 
to the modeling tool that this field should be considered the key when constructing a stateful topic.

The interface used by the On Demand Receiver component to query the full update from a particular sensor, in addition 
to an exception that may be thrown if an invalid sensor identifier is passed to the operation, is also described in this 
location using a similar process: an exception and interface element is inserted into the model, and IDL defined using a 
similar process as before. This interface is named PositionServer.
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Fig. 27. SATNAV interfaces and exceptions.

Fig. 28. Component assemblies.

5.1.2. Component implementation
The component implementation model describes the concrete implementations of the component definitions described 

earlier: this will result in the generation of skeleton code that the component developer may populate with business logic. 
This model is also used to associate artifacts, shared libraries and other configuration files required by the component 
implementations.

5.1.3. Component and assembly definitions
As described earlier, this example contains three components: a Distributor, a ContinuousReceiver, and an

OnDemandReceiver. In the interest of brevity, we will describe modeling only the Distributor component; the other 
two are similarly modeled. We begin by inserting a component definition into the model and opening it. This component 
has three ports: a stateful publisher that uses the SatFullInfo topic defined earlier, a stateless publisher that uses the
SatName topic, and an asynchronous RMI port that provides the SatPosition interface. A port representing each of 
these is placed into the component definition model and populated with the respective data type.

Once all three component definitions have been modeled, we create an assembly: a LocalAssembly that contains the
Distributor and a ContinuousReceiver. The OnDemandReceiver will not be part of an assembly and will be 
modeled as part of the deployment later. This is accomplished by creating an assembly model, and inside inserting the two 
component definitions defined earlier that are intended to be part of this assembly. As shown in Fig. 28, the ports defined 
inside these component definition models are now exposed on the components inside the assembly, allowing us to establish 
connections amongst the components.

In the Interaction aspect of the assembly model, we define connections between RMI ports of components; in this 
case, the SatPosition ports. Since the Distributor component, which provides this interface, and the OnDeman-
dReceiver, which requires it, are not in the same assembly, we cannot directly establish this connection. Instead, we 
create external port on the LocalAssembly and delegate it to the PositionServer port on the Distributor, as 
shown in Fig. 28.

A different aspect, ‘Topics and Domains’, is used to establish mapping between publish/subscribe ports and topics. To 
accomplish this, we populate the assembly with two Virtual Topics, elements that are later assigned to concrete topics in 
the deployment model. A Virtual Topic is similar to a template parameter that has to be bound to a specific topic later. One 
Virtual Topic is used to represent the SensorFullInfo topic, and a connection is drawn from the stateful publish and 
subscribe ports on the Distributor and ContinuousReceiver references, respectively. Another Virtual Topic is used 
to represent the SensorName topic, and connections drawn between the stateless publication port on the Distributor. 
This is shown in Fig. 28.

5.2. Application development

In this section, we describe the process of modeling an application, which is divided into three aspects:

• Deployment: Assemblies and components are instantiated, concrete component implementations are assigned, and 
components are assigned to actors.
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Fig. 29. Application deployment aspect.

Fig. 30. Application interaction aspect.

• Interactions: Connections are established between external ports of components and assemblies.
• Topics and Domains: Concrete topics are assigned to Virtual Topics and other publish/subscribe ports.

5.2.1. Deployment aspect
In the Deployment aspect of the Application model, we accomplish two primary tasks. First, we associate concrete 

component implementations with the assemblies and component definitions that we wish to deploy. Second, we associate 
components and assemblies with containers (logical groupings of components) and actors.

We begin by inserting the assemblies and components that we wish to deploy into the model. In this example, we 
wish to deploy the LocalAssembly (containing the Distributor and ContinuousReceiver) and the OnDeman-
dReceiver (which is not part of any assembly). Next, we insert implementations (modeled in Section 5.1.2). Component 
instances inside the assembly are exposed as ports; we assign implementations by establishing a connection between the 
port and the desired implementation; for components deployed without an assembly, we establish a connection between 
the component and the desired implementation, as shown on the right hand side of Fig. 29. Containers are assigned in 
a similar fashion, by creating a connection between the component (or port of an assembly) and the desired container. 
Containers are assigned to Actors in a similar fashion. This is shown on the left hand side of Fig. 29.

5.2.2. Interactions aspect
The Interactions aspect of the Application model is shown in Fig. 30. This aspect shows the components inserted into 

the application in Section 5.2.1, but hides the component implementations, containers, and actors. In this view, we create 
a connection between the PositionServer provided by the LocalAssembly and required by the OnDemandReceiver. The 
interactions aspect may also be used to expose ports to other applications in a manner similar to assemblies, described in 
Section 5.1.3; that capability, however, is outside the scope of this evaluation.

5.2.3. Topics aspect
The Topics aspect of the Application model is shown in Fig. 31. This aspect shows pub/sub ports on components, and 

Virtual Topics of assemblies. In this view, we insert two concrete topics: FullInfo and SensorName. These concrete 
topics are associated with the subscriber port on the OnDemandReceiver and the virtual topics exposed by the Lo-
calAssembly.

5.3. System integration

5.3.1. Software packaging
In the software packaging model, the system integrator specifies the temporal partitions available in the system, assigns 

actors to temporal partitions (and by extension the components and containers within those actors), and may establish con-
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Fig. 31. Application topics aspect.

Fig. 32. Software packaging scheduling aspect.

nections amongst external ports provided by the applications that are instantiated. This is accomplished with three aspects: 
Scheduling, which handles specification and assignment of actors to schedules; Interactions, which handles connections be-
tween applications; and Topics, which allows further refinement of the publish/subscribe configuration of the system. The 
Interactions and Topics aspects are similar in function to those described in Section 5.2.2 and Section 5.2.3, and will not be 
described here.

In the Scheduling aspect, shown in Fig. 32, partition schedules are modeled and assigned to actors. Software applications 
are placed in this model, and the actors contained within those application models are exposed as ports. Actors are assigned 
to schedules by creating a connection between the actor and the desired schedule.

5.3.2. Cluster configuration
In the Cluster Configuration model, the system integrator specifies the hardware configuration of the cluster: which 

hardware nodes are available, their configuration (network interfaces, available devices, etc.). Multiple cluster configuration 
models may be provided to represent how the cluster configuration is expected to evolve over time as satellites join and 
leave the cluster.

5.3.3. Software configuration
In the Software Configuration model, the system integrator specifies how software packages map to available hardware 

in cluster configuration models. Software packages are placed in this model; partition schedules present in the software 
packages are exposed as ports, which may be connected to cluster configurations present in this model. By mapping the 
software packages to one cluster configuration, it is possible to show how the software configuration changes when the 
cluster configuration is changed.

6. Related work

This section describes related work in the field of architecture description languages for real-time, embedded systems. 
We classify the work along two dimensions: those that pertain to standards, technologies and tools, and those that are 
related to research efforts that describe architecture description languages or use the standard technologies.

6.1. Standards and technologies for architecture description languages for embedded systems

The Architecture Analysis and Design Language (AADL) [5,6] is a standard developed by the Society of Automotive Engi-
neers. Originally developed for aerospace systems, the standard is applicable to the model-based specification and analysis 
of embedded real-time systems and systems of systems. It has comprehensive support for modeling a variety of component 
types and their interactions. Component abstractions in AADL consist of software components, computational hardware, and 
the overall system. Different interaction patterns between components are supported in AADL. Using AADL it is possible to 
conduct analysis for a variety of critical system properties, such as performance, schedulability and reliability.

Despite the comprehensive support offered by AADL for model-based specification and analysis of embedded real-time 
systems, for the system F6 we decided to address the problem by developing a completely new architecture design language. 
This decision stemmed from our preference for domain-specificity over generality as explained below. For instance, AADL 
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aims to support the needs of a wide range of embedded real-time systems, making it a general-purpose architectural 
description language. Consequently, a component in AADL can be of different types including a process, thread, and thread 
group among other things. In contrast, in the IAP, a component has precise semantics, wherein an application developer 
understands a component to be unit of encapsulation for application business logic. In AADL it is possible to define one 
component type, such as a thread, and map it to the hardware resources to realize execution semantics. On the other hand, 
in the IAP, components cannot be directly mapped to hardware resources. They must first be composed together into actors, 
which in turn are allocated to the resources, and a collection of actors represents an application.

In the IAP, we support a variety of interaction patterns among components that may use different interaction paradigms 
such as call-return and publish/subscribe, provide first class support for multiple levels of security and support an elaborate 
fault management scheme. These patterns can be easily extended with new interactions, if required. Additionally, the ports 
on the components support “programming by contract” with the help of pre- and post-condition checking.

Also note that the concept of an actor in IAP is slightly different from that of a traditional process. Moreover, schedul-
ing of activities at the component-level and the actor-level occur at two different levels in our IAP. For example, although 
actors can support multiple threads, the run-time framework allows only one thread to execute at any given time in one 
component, i.e., at the component-level, the IAP enforces a per-component, one-thread-at-a-time approach to the schedul-
ing of threads in each component. This decision was made to relieve application developers from having to use complex 
synchronization primitives and to avoid race conditions. These activities are in turn mapped to a partition at the actor-level 
and scheduled on the hardware using an ARINC653-style partition-based scheduling semantics.

Many of these key distinguishing features and semantics of the IAP are hard to realize with relative ease in AADL with-
out substantial additional effort. We believe that although it is possible to extend as well as constrain generic modeling 
capabilities using techniques, such as stereotypes as used in UML or annex capabilities in AADL, we decided against this 
approach due to the additional efforts required in this process since such additional efforts and extensions may often incor-
porate ad hoc decisions, which ultimately may hinder the correct-by-construction realization of IAP applications. Therefore, 
our approach is based on using a domain-specific modeling language.

Other general-purpose approaches similar to AADL are OMG’s SysML and OMG’s MARTE profile for UML. SysML [7] is 
a general-purpose modeling language for systems engineering. SysML leverages a subset of the Unified Modeling Language 
(UML) while extending it with capabilities needed to model complex systems engineering problems, which is called the 
SysML profile for UML. The extensions enable engineering analysis. The Modeling and Analysis of Real-time and Embedded 
(MARTE) systems [9] is a UML profile to extend UML to support the model-driven development of real-time and embedded 
systems. Similar arguments we made on domain-specificity versus generality apply in the context of these standards, too, 
which made us design DREMS ML.

By no means do we discount the strengths of these standards, and our future work may involve automated transforma-
tions between DREMS ML and these standards so that we can leverage the extensive tool support and analysis capabilities 
that are commonly available with tools based on these standards. We believe such transformations will not be compli-
cated since there are some similarities between DREMS ML and the standards. For example, hierarchical decomposition, and 
packaging are some common features available across all these technologies.

6.2. Related research on architecture description languages for embedded systems

In [27], the authors extend SysML with concepts borrowed from AADL by proposing the ExSAM profile. The key benefit 
derived from this exercise was the ability to model various kinds of system engineering concepts while at the same time 
be able to leverage the large set of existing AADL-based analysis tools. In effect their approach strengthens our argument 
towards building a domain-specific DREMS ML. Like the ExSAM project, interpreters in DREMS ML can transform the artifacts 
to AADL, wherever possible, to leverage the analysis tools in AADL.

The work described in [28] illustrates extensions to AADL using its Error Model annex feature to model and reason 
about errors including modeling of probabilistic faults, how they propagate, recovery from failures, and degraded modes 
of operation ensuing from the faults. The resulting dialect of AADL developed by the authors is called SLIM (System-Level 
Integrated Modeling). While the area of fault modeling and reasoning as espoused and adopted in this work is very useful 
to our work in DREMS ML, this work also demonstrates the need for extensions to AADL to attain certain domain-specific 
objectives, which are intuitive to the system engineers. To that end our philosophy if DREMS ML is aligned with this work. 
In essence, DREMS ML is a form of architectural description language.

The EAST-ADL2 [29] project defines an architecture description language tailored towards automotive embedded sys-
tems. In particular, its goals are to capture in one place all the artefacts of an embedded systems including requirements, 
features, behaviors, and software and hardware components. It also includes dependencies stemming from decisions that 
must be made in the context of various refinements, allocation decisions, composition and communication. EAST-ADL2 has 
been developed to work in concert with AUTOSAR [30] to provide a complete and effective development environment for 
automative systems starting all the way from conception all the way to implementation. EAST-ADL2 is a domain-specific 
language built using a UML2 profile. EAST-ADL2 demonstrates an effort that does not use AADL, however, still supports an 
architectural description language for automative systems. Like EAST-ADL2, DREMS ML is also a domain-specific language 
built using a metamodeling language provided by our GME tool that is based largely on UML. Like EAST-ADL2, DREMS ML
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also works in concert with the IAP runtime architecture, which is used to provide a “cluster-as-a-service” capability to 
distributed, real-time and embedded systems.

A survey on architectural description languages is described in [31]. A key motivation for this work was to understand 
the best practices in ADLs. Among the key findings, the authors recommend that any ADL have better support for commu-
nication among different stakeholders. In tune with these recommendations, DREMS ML has support for multiple different 
developers to use the language to build the system as a series of enhancements. Another key recommendation is that any 
ADL should be simple, pragmatic, and support collaboration instead of been heavy-weight. The design of DREMS ML is 
aligned with this philosophy.

Although DREMS is built on OMG standards, the Fractal Initiative [32] and ProCom [33] aim at a similar language-
independent component specification framework. The modeling language itself is tied to our component model, but the 
philosophy of the component specification chain (definition-instance-implementation) can simplify the design over these 
other component models as well.

With regard to analysis for architecture description languages, there are a number of formal tools that perform be-
havioral analysis on architecture description languages, such as [34–37]. DREMS ML includes analysis for syntactic and 
well-formedness checks (Section 4.3.1), security analysis (Section 4.3.2), resource usage analysis (Section 4.3.3) and schedul-
ing analysis (Section 4.3.4).

7. Conclusions

We introduced a novel, wide spectrum architecture design language for the modeling, development, integration, verifica-
tion, deployment and maintenance of component-based, distributed real-time embedded applications. The salient features 
of the language are: (1) integrated domain-specific modeling languages to support all developmental activities, (2) a soft-
ware component model with precisely defined execution semantics that allows the compositional construction of complex 
applications, (3) reliance on industry standards for a wide range of component communication and interaction patterns, 
(4) automatic generation of all implementation and deployment artifacts (except the component business logic code) from 
a single source, (5) support for complex system integration activities, including verification and testing. The language is 
defined with the help of a metamodel and a prototype implementation is in use by flight software developers today.

Further development work on the language will include: (1) models for supporting fault management in the deployed 
system, (2) models for quality of service properties (requirements and capabilities), (3) integration with verification and val-
idation tools. Further application domains (beyond System F6) will be also considered, where complex distributed real-time 
applications are needed.
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