

VANDERBILT

80% of the accident, and we use them for our prediction model.

Fig. 3: Blue lines represent TN's roadway network. Yellow segments represent interstate highway segments under the jurisdiction of TDO, and red vehicles show the potential locations of responders.

Although frequency of road accidents is high, when viewed from the perspective of total time and space, incidents are rare events. Sparsity > 99.8%.

88833888388888888888

2019-04-01 0 2019-04-02 (2019-04-03 0 2019-04-04 2019-04-06 0 2019-04-07 (2019-04-08 (2019-04-10 0 2019-04-17 0 2019-04-18 00 2019-04-19 00 2019-04-20 00 2019-04-21 00 2019-04-22 00 2019-04-23 00 2019-04-24 00 2019-04-25 0 2019-04-26 00 2019-04-27 00 2019-04-28 00 2019-04-29 00 2019-04-30 00

Fig. 2: randomly selected 180 road segments for 4-hour time windows in April 2019. Each pixel in the matrix denotes the presence (white) or absence (black) of an accident

Spatial Temporal Resource Demand Model for Emergency Response Management Sayyed Mohsen Vazirizade, Ayan Mukhopadhyay, Geoffrey Pettet, Said El Said, Hiba Baroud, Abhishek Dubey

https://statresp.ai

		Data														
Dataset	Range	Size	Rows	Features	Source	Frequency	Туре	Description								
-	-	-	-	Time of day	derived	-	Temporal	We divide each day into six 4-hour time windows.								
-	-	-	-	Weekend	derived	-	temporal	A binary feature that denotes weekdays.								
Incident	02/01/2017			Past Incidents in the last window	derived	-	Spatio-temporal	Number of incidents on the segment in the last time window of 4 how								
	to	21MB	80.000	Past Incidents in a day	derived	-	Spatio-temporal	Number of incidents on the segment in the last day								
	05/01/2020	ZIND	80,000	Past Incidents in a week	derived	-	Spatio-temporal	Number of incidents on the segment in the last week								
				Past Incidents in a month	derived	-	Spatio-temporal	Number of incidents on the segment in the last month								
	02/01/2017			Visibility	Weatherbit	1 hour	Spatio-temporal	A measure of the distance at which an object or light can be clearly o								
Weather	to	300MB	1,400,000	Wind Speed	Weatherbit	1 hour	Spatio-temporal	Speed of wind.								
weather	06/01/2020	JUUNID	1,400,000	Precipitation	Weatherbit	1 hour	Spatio-temporal	Amount of precipitation.								
				Temperature	Weatherbit	1 hour	Spatio-temporal	It is the reported temperature.								
	04/01/2017			Congestion	derived	5 minutes	Spatio-temporal	Congestion is the ratio of the difference between free flow speed and								
Traffic	to	1.2TB	30,000,000,000	Free Flow Speed	INRIX	5 minutes	spatial	The speed at which drivers feel comfortable if there is no traffic and								
	12/01/2020			Traffic Confidence	INRIX	5 minutes	Spatio-temporal	A confidence score regarding the accuracy of the traffic data (we coll								
Roadways				Lanes	INRIX	static	Spatial	Number of lanes for a roadway segment.								
	Static	81MB	80,000	Miles	derived	static	Spatial	Length of a roadway segment.								
				iSF	derived	static	Spatial	Inverse scale factor which represents the the curvature of a roadway								

Spatial Temporal Prediction

The goal is designing a function, $f(X \mid w, \theta)$, where X represents a measure of incident occurrence such as a count or presence of incidents during a specific time period. θ 📒 represents the parameters regarding the model.

Fig. 4: Schematic pipeline of the forecasting model

Fig. 5: prediction results using 2 clusters.

- dots) are tightly packed around high demand areas (red).

•	Different modeling paradigm (Logistic regression, neura
	 – concentration and p - # responders) were explored. Ex

			Classification Metrics				Со	rrel-	el- Total travel distance of responders per accident (km)											Average number of unattended accidents								Maximum number of unattended accidents								
			classification methos			at	ion	<i>p</i> =10			p=15				p=20					1	.0			1	15			1	0		15					
Model	Clustering	Resampling	ag Acc. Prec. Rec. F1 Pear. Spear. $\alpha=0$ $\alpha=0.5$ $\alpha=1$ $\alpha=2$					α=0	α=0.5	α=1	α=2	α=0	α=0.5	α=1	α=2	0	0.5	1	2	0	0.5	1	2	0	0.5	1	2	0	0.5	1	2					
Naive			95.5	3.8	4.2	4.0	82.1	60.8	39.48	38.44	43.21	45.35	26.29	25.78	27.34	26.78	19.29	19.43	20.36	23.12	0.54	0.49	0.48	0.46	0.02	0.01	0.01	0.01	15.00	14.00	14.00	16.00	2.00	1.00	1.00	2.00
<u>LR</u>		No	94.0	13.8	27.4	18.2	70.4	55.2	41 54	41.88	40 04	44 90	25 30	25 16	26.93	26 73	18 98	16 78	17.41	20.23	0.54	0.47	0.42	0.42	0.00	0.00	0.01	0.01	16.00	13.00	14.00	12.00	0.00	0.00	1.00	1.00
	No cluster	resampling	5 1.0	10.0	27.1	10.2	/0.1	55.2	11.51	11.00	10.01	11.50	25.50	23.10	20.55	20.75	10.50	10.70	17.11	20.25	0.51	0.17	0.12	0.12	0.00	0.00	0.01	0.01	10.00	13.00	11.00	12.00	0.00	0.00	1.00	1.00
		RUS	93.0	12.8	32.3	18.3	63.1	54.7											17.00			0.52	0.46	0.46	0.00	0.00	0.01	0.00	17.00	17.00	15.00	15.00	0.00	0.00	1.00	0.00
		ROS	93.0	12.8	32.3		63.2												16.61			0.51	0.46	0.45	0.00	0.00	0.01	0.00	17.00	17.00	15.00		0.00	0.00	1.00	0.00
		No sample	93.0	12.5	30.9	17.7		58.4											18.95			0.41	0.43	0.44	0.02	0.01	0.01	0.01				15.00	3.00		1.00	2.00
	clustering	RUS	92.3	12.1	34.4	17.8	74.2	58.1											17.18		0.54	0.48	0.42	0.40	0.01	0.00	0.00	0.01	15.00	15.00	11.00	12.00	1.00	0.00	0.00	1.00
		ROS	92.4	12.2	34.2	17.9	74.2	58.1	42.78	40.89	42.71	44.22	24.58	24.84	26.18	28.29	18.87	18.66	17.04	19.90	0.54	0.48	0.42	0.41	0.01	0.00	0.00	0.01	15.00	15.00	11.00	15.00	1.00	0.00	0.00	1.00
	No cluster	No resampling	94.9	19.2	32.8	24.0	71.7	58.5	37.04	39.12	39.21	43.13	22.35	23.57	24.74	26.69	15.70	16.44	17.52	20.33	0.45	0.40	0.43	0.40	0.01	0.00	0.01	0.01	12.00	11.00	11.00	11.00	1.00	0.00	1.00	1.00
	NO CIUSIEI	RUS	95.0	19.2	32.6	24.1	73.2	59.3	37.44	39.07	37.83	43.84	22.24	23.85	24.97	27.64	16.40	16.21	17.05	20.27	0.47	0.41	0.43	0.45	0.00	0.01	0.01	0.01	12.00	11.00	11.00	12.00	0.00	1.00	1.00	1.00
<u>NN</u>		ROS	94.9	19.1	32.8	23.9	69.3	54.7	37.32	37.71	39.86	43.21	21.57	23.15	24.32	26.61	15.70	15.81	17.23	20.33	0.46	0.41	0.42	0.43	0.00	0.00	0.00	0.01	12.00	11.00	11.00	13.00	0.00	0.00	0.00	1.00
		No sample	95.0	19.0	31.6	23.7	75.6	58.9	39.32	39.88	39.61	43.09	23.18	23.96	24.58	27.34	17.46	17.15	17.00	20.16	0.44	0.40	0.42	0.42	0.00	0.00	0.00	0.00	15.00	12.00	12.00	14.00	0.00	0.00	0.00	0.00
	clustering	RUS	94.7	18.4	32.7	23.3	73.1	54.6	39.79	39.61	39.99	45.08	22.92	24.72	25.32	27.75	16.20	17.10	17.71	21.23	0.48	0.45	0.42	0.42	0.01	0.01	0.01	0.02	12.00	11.00	11.00	12.00	1.00	1.00	1.00	2.00
		ROS	94.7	18.3	33.1	23.3	74.5	55.4	38.60	38.24	40.66	45.50	22.23	23.78	25.04	27.40	16.31	16.89	18.00	20.81	0.48	0.41	0.44	0.41	0.00	0.00	0.00	0.01	13.00	11.00	14.00	11.00	0.00	0.00	0.00	1.00
	No cluster	No resampling	95.0	19.0	31.8	23.6	78.7	63.4	40.81	38.28	39.62	44.46	23.21	22.99	24.30	26.22	16.88	16.36	16.49	19.97	0.51	0.44	0.42	0.42	0.00	0.00	0.00	0.02	13.00	12.00	12.00	11.00	0.00	0.00	0.00	1.00
		RUS	95.2	19.3	30.5	23.5	67.4	56.9	39.55	38.71	40.13	42.39	23.44	23.32	24.41	27.06	16.47	17.19	17.17	20.04	0.48	0.40	0.38	0.43	0.01	0.01	0.00	0.02	13.00	12.00	13.00	13.00	1.00	1.00	0.00	2.00
		ROS	95.3	18.6	27.6	22.1	79.2	64.6	41.14	39.86	40.37	45.29	23.72	23.78	25.12	26.82	17.89	16.53	16.68	20.14	0.53	0.46	0.44	0.42	0.01	0.01	0.00	0.00	16.00	13.00	11.00	14.00	1.00	1.00	0.00	0.00
		Class weights	95.4	20.6	30.4	24.4	77.1	62.5	39.79	39.46	39.91	44.58	23.14	23.14	24.09	26.56	16.24	16.51	17.68	20.04	0.46	0.41	0.40	0.41	0.01	0.01	0.00	0.01	12.00	11.00	12.00	12.00	1.00	1.00	0.00	1.00
<u>Tree</u>		No	95.1	18.9	30.5	23.2	79.8	62.3	41.40	38.81	39.88	43.16	22.98	23.02	24.56	26.75	16.88	16.25	16.89	19.90	0.49	0.42	0.42	0.43	0.01	0.00	0.00	0.01	12.00	13.00	11.00	12.00	1.00	0.00	0.00	1.00
		resampling																																		_
	clustering	RUS		19.4	32.5														18.00						0.00	0.00	0.00	0.00				12.00			0.00	
	C	ROS	95.1	18.3	28.7	22.2	80.1	63.6	40.94	39.70	40.82	44.21	23.36	23.48	24.45	26.60	16.92	16.08	16.80	20.38	0.51	0.45	0.43	0.40	0.01	0.00	0.01	0.01	13.00	13.00	11.00	12.00	2.00	0.00	1.00	1.00
		Class weights	95.4	20.6	30.4	24.4	77.1	62.5	39.53	38.50	40.95	45.12	23.54	23.54	23.94	27.58	16.29	17.34	18.12	20.37	0.48	0.38	0.38	0.41	0.01	0.00	0.00	0.01	12.00	10.00	10.00	12.00	1.00	0.00	0.00	1.00
		No	94.4	14.6	26.8	18.9	74.0	58.0	40.37	40.14	40.15	44.42	25.35	25.07	25.99	26.66	18.53	16.45	17.08	20.81	0.51	0.45	0.41	0.40	0.02	0.00	0.00	0.01	12.00	15.00	12.00	14.00	3.00	0.00	0.00	1.00
ZIP	No cluster	resampling	04.2	12.0	20.1	10.1	C1 1	FO C		45 69	40.90	44.22	25 72	25 42		27 54	19.02	10.20	10.02	10.01	0.50	0.52	0.51	0.49	0.01	0.02	0.01	0.00	16.00	17.00	15.00	15.00	2.00	2.00	2.00	0.00
		RUS	94.2	13.9	-		61.1												16.93			0.53	0.51		0.01		0.01		16.00			15.00			2.00	0.00
		ROS	94.2	13.9	26.7	18.2	01.2	50.6	44.51	45.42	40.70	44.62	25.77	25.48	27.00	27.80	18.88	19.08	10.98	19.76	0.59	0.53	0.51	0.48	0.01	0.02	0.01	0.00	16.00	17.00	15.00	15.00	2.00	3.00	2.00	0.00
	clustering	No resampling	93.1	13.1	31.9	18.5	77.6	61.8	39.35	41.08	40.12	44.97	24.17	24.66	26.42	27.26	18.06	18.40	18.91	20.92	0.47	0.45	0.42	0.37	0.02	0.00	0.01	0.01	13.00	15.00	12.00	12.00	3.00	0.00	1.00	1.00
	0.00001116	RUS	93.0	12.7	30.8	S	74.2	57.1	43.46	41.76	42.50	45.17	24.67	26.08	26.56	28.36	19.36	19.85	17.47	21.08	0.55	0.48	0.49	0.46	0.00	0.01	0.00	0.01	16.00	13.00	15.00	12.00	0.00	1.00	0.00	1.00
		ROS	93.0	12.8	30.9	18.0	74.3	57.0	43.57	41.31	42.71	45.08	24.77	26.13	26.41	28.52	19.32	20.02	17.29	20.98	0.57	0.49	0.48	0.45	0.00	0.01	0.00	0.01	17.00	13.00	15.00	12.00	0.00	1.00	0.00	1.00

 α controls the penalty on increased load on responders. Our empirical results show that $0.5 \le \alpha \le 1$ results in the optimal allocation.

- development of detection and design of allocation and dispatch algorithms.

TDOT Department of Transportation

Results

ral network, random forest, Zero inflated Poisson) and parameters (α Existing work use hotspot analysis which fails in such sparse datasets.

Green cells show better performance in each column. <u>Neural Network and Random forests</u> are best performing models

Conclusions

• Understanding incident likelihood and resource demand across fine-grained road structure is hard. We have developed a set of techniques and models that can estimate the likelihood well for 20 % of the segments that see 80% of the incidents. We are working on a different set of techniques to handle extreme sparsity for the other segments. Future work includes