Introduction

Annually, road accidents account for 1.25 million deaths globally and about 240 million EMS calls are made in the U.S.		
Call is placed to Emergency Helpline	Patched to a Telecommunicator with ANI/ALI	Situation in analyzed, location, and type of service determined
		1
Call is received by the appropriate service agency	CAD is used to route the call to appropriate service provide	Advice is provided over the phone if needed
\downarrow		
Dispatch is made through CAD	Fig. 1: Typical Emergency Dispatch Helpline Model Our focus is to improve the green step	

We focus on the Interstate Highway network of the state of TN Among the yellow segments only 20% of them accounts for 80% of the accident, and we use them for our prediction model.

 Although frequency of road accidents is high, when viewed from the perspective of total time and space, incidents are rare events. Sparsity > 99.8%.

Prediction to Inform Response

We modify the p -median optimization problem by adding a balancing term that accounts for increased load on esponders in hotspots.
The balancing term has a parameter dots). As tincreases responders (gree demand areas (red).

α controls the penalty on increased load on responders. Our empirical results show that $0.5 \leq \alpha \leq 1$ results in the optimal allocation.

Conclusions

- Understanding incident likelihood and resource demand across fine-grained road structure is hard. We have developed a set of techniques and models that can estimate the likelihood well for 20% of the segments that see 80% of the incidents. We are working on a different set of techniques to handle extreme sparsity for the other segments. Future work includes development of detection and design of allocation and dispatch algorithms.

