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• Annually, road accidents account for 1.25 million deaths
globally and about 240 million EMS calls are made in the U.S.

• We focus on the Interstate Highway network of the state of TN.
Among the yellow segments only 20% of them accounts for
80% of the accident, and we use them for our prediction
model.

• Although frequency of road accidents is high, when
viewed from the perspective of total time and space, incidents
are rare events. Sparsity > 99.8%.

Contact Info: abhishek.dubey@vanderbilt.edu

Spatial Temporal Prediction
The goal is designing a function, 𝑓 (𝑋 | 𝑤, 𝜃),
where 𝑋 represents a measure of incident
occurrence such as a count or presence of
incidents during a specific time period. 𝜃
represents the parameters regarding the model.

Balancing Term

𝛼 controls the penalty on increased load on responders. Our empirical
results show that 0.5 ≤ 𝛼 ≤ 1 results in the optimal allocation.

• We modify the p-median optimization
problem by adding a balancing term that
accounts for increased load on
responders in hotspots.

• The balancing term has a parameter
called 𝛼. As it increases responders (green
dots ) are tightly packed around high
demand areas (red).

• Different modeling paradigm (Logistic regression, neural network, random forest, Zero inflated Poisson) and parameters (𝛼
– concentration and p - # responders) were explored. Existing work use hotspot analysis which fails in such sparse datasets.

Fig. 2: randomly selected 180 road segments for 4-hour time windows in April 2019. Each pixel in the
matrix denotes the presence (white) or absence (black) of an accident

Fig. 4: Schematic pipeline of the forecasting model Fig. 5: prediction results using 2 clusters.
Fig. 3: Blue lines represent TN’s roadway network. Yellow segments represent interstate highway 
segments under the jurisdiction of TDO, and red vehicles show the potential locations of responders.

Fig. 1: Typical Emergency Dispatch Helpline Model.
Our focus is to improve the green step.
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seeks to minimize the weighted distance between allocations and
points of demand. However, by increasing U (alternative b), the op-
timizer seeks to avoid assigning high risk cells to a single responder.
Formally, we solve the following optimization problem:
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- 9 = ? (1c)

.8 9  - 9 , 88 2 {1, . . . , |⇢ | }, 89 2 {1, . . . , |! | } (1d)
- 9 ,.8 9 2 {0, 1}, 88 2 {1, . . . , |⇢ | }, 89 2 {1, . . . , |! | } (1e)

where ⇢ is the set of demand edges from graph ⌧ , ! is the set of
possible responder locations, ? is the number of responders to be
located, 08 is the likelihood of accident occurrence on edge 48 2 ⇢,
and 38 9 is the distance between edge 48 2 ⇢ and location ; 9 2 !.
.8 9 and - 9 are two sets of decision variables; - 9 = 1 if a responder
is located at ; 9 2 ! and 0 otherwise, and .8 9 = 1 if edge 48 2 ⇢ is
covered by a responder located at ; 9 2 ! (i.e. the responder at 9 is
the nearest placed responder to 4) and 0 otherwise. The balancing
term we add is denoted by 1 9 = (

Õ
42⇢ 04.4 9Õ
42⇢ 04

)U , and represents the
proportion of total demand covered by a responder located at 9 . The
in�uence of the balancing term is controlled by the hyper-parameter
U ; intuitively, as U increases, responders are more ‘tightly packed’
around high demand areas, and if U = 0 our formulation reduces
to the standard p-median formulation. Constraint (1b) expresses
that the demand of each edge must be met, (1c) ensures that ?
responders are located, and (1d) shows that edges must be covered
only by locations where responders have been located.
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Figure 5: Illustrating the impact of U : a) standard p-median (U = 0).
b) modi�ed p-median with U > 0. Notice as U increases responders
(green dots) are tightly packed around high demand areas.

The p-median problem is known to be NP-hard on general
networks [40], therefore heuristic methods are employed to �nd
approximate solutions in practice. We use the Greedy-Add algo-
rithm [41] to optimize the locations of responders. We show the
algorithm in Algorithm 1. First we initialize the iteration counter
: and the set of allocated responder locations -: to the empty set
(step 1). Then, as long as there are responders awaiting allocation,
we iterate through the following loop: (1) update counter : current
iteration (step 3), (2) for each potential location not already in the
allocation, compute the modi�ed p-median score (equation 1a) of
the allocation which includes the potential location (steps 5 - 8), and

Algorithm 1: Greedy-Add Algorithm
input :Demand Edges ⇢, Potential Responder Locations !,

Segment Incident Likelihoods 08 848 2 ⇢, Segment to
Location Distances 3 (8, 9) 848 2 ⇢, 8; 9 2 !, Number of
Responders ? , Balance Factor U

output :Responder Locations -
1 Initialize : := 0, -: := ; ;
2 while : < ? do
3 : := : + 1;
4 for location ; 90 2 !, where 9 0 8 -:�1 do
5 - 0

: := -:�1 [ ; 90 ;
6 Find nearest facilities ~8 848 2 ⇢, where ~48 2 - 0

: ;

7 Compute balance terms 1 9 := (
Õ
48 2⇢ 08kÕ
48 2⇢ 08

)U 8; 9 2 !

wherek := 1 if ~8 = ; 9 ,k := 0 otherwise;
8 Compute /:

90 :=
Õ

48 2⇢ 043 (48 , ~8 )1~48 ;
9 end

10 Best location ;⇤9 := argmin9 /:
9 ;

11 -: := -:�1 [ 9⇤;
12 end
13 Return -:

(3) �nd the location that minimizes the modi�ed p-median score
(step 10) and add it to the set of allocated responder locations (step
11). While myopic, this algorithm is scalable to large allocation
problems.

Rather than restricting responders to the roadway segments ⇢,
we allow them to be located anywhere across the state. To accom-
plish this, we de�ne the set of possible responder locations ! as
a grid of spatial cells over Tennessee. We de�ne each grid cell as
being 0.1 degrees latitude by 0.1 degrees longitude, which is ap-
proximately 9km x 11km in Tennessee. This results in 1445 possible
locations across the state. The center of each cell is used when
calculating the distance between it and each edge in ⇢.

Given an allocation of responders, we simulate response to real
incidents to evaluate the e�cacy of our model. Response to emer-
gency incidents is typically greedy [1]; the closest available re-
sponder to the scene of the incident is dispatched to attend to it.
This a direct consequence of the critical nature of the incidents
that emergency responders address. We use a simulator that im-
itates greedy dispatch and evaluate the performance of di�erent
predictive models.

7 EXPERIMENTAL EVALUATION
To evaluate our models, we use actual historical incident data, road-
way geometry, tra�c data, and weather data. We train each model
based on a rolling temporal window as shown in Fig. 6. Our code, a
synthesized dataset, and high-resolution �gures and tables are all
available online (see the Appendix).

7.1 Model hyper-parameters
We tune hyper-parameters for each model by cross-validation. For
models based on random forests and neural networks, we keep the
architecture �xed based on the largest training sample we have;
classi�cation thresholds are tuned for every training window based
on a validation set. We describe our model parameters below:
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𝛼 =0 𝛼 >0

Green cells show better performance in each column. Neural Network and Random forests are best performing models

Table 1: Data Features, Size and Sources

Dataset Range Size Rows Features Source Frequency Type Description
- - - - Time of day derived - Temporal We divide each day into six 4-hour time windows.
- - - - Weekend derived - temporal A binary feature that denotes weekdays.

Incident

02/01/2017

21MB 80,000

Past Incidents in the last window derived - Spatio-temporal Number of incidents on the segment in the last time window of 4 hours
to Past Incidents in a day derived - Spatio-temporal Number of incidents on the segment in the last day
05/01/2020 Past Incidents in a week derived - Spatio-temporal Number of incidents on the segment in the last week

Past Incidents in a month derived - Spatio-temporal Number of incidents on the segment in the last month

Weather

02/01/2017

300MB 1,400,000

Visibility Weatherbit 1 hour Spatio-temporal A measure of the distance at which an object or light can be clearly discerned.
to Wind Speed Weatherbit 1 hour Spatio-temporal Speed of wind.
06/01/2020 Precipitation Weatherbit 1 hour Spatio-temporal Amount of precipitation.

Temperature Weatherbit 1 hour Spatio-temporal It is the reported temperature.

Tra�c
04/01/2017

1.2TB 30,000,000,000
Congestion derived 5 minutes Spatio-temporal Congestion is the ratio of the di�erence between free �ow speed and the current speed to free �ow speed

to Free Flow Speed INRIX 5 minutes spatial The speed at which drivers feel comfortable if there is no tra�c and adverse weather condition.
12/01/2020 Tra�c Con�dence INRIX 5 minutes Spatio-temporal A con�dence score regarding the accuracy of the tra�c data (we collect this directly from INRIX).

Roadways Static 81MB 80,000
Lanes INRIX static Spatial Number of lanes for a roadway segment.
Miles derived static Spatial Length of a roadway segment.
iSF derived static Spatial Inverse scale factor which represents the the curvature of a roadway segment.

Figure 3: A combination of the length of a curve (c�⌫) and the short-
est path between the two ends of the curve (�⌫) can be used to de-
note its curvature

segments through INRIX at a temporal resolution of 5-minute
intervals for about three years. Speci�cally, we retrieved the
free �ow speed of tra�c, the estimated current speed of the
vehicles, and the con�dence scores of the estimates. E�ective
congestion can be calculated from our data as the ratio of the
di�erence between the free �ow speed and the current speed
to the free �ow speed.

(3) Weather : Weather is inherently spatial temporal, and can play
an important role in accident rates [1]. We collected hourly
weather data (temperature, precipitation, visibility, and wind)
from 40 di�erent weather stations in and around the state of
Tennessee. To use weather data to forecast accidents on a given
road segment, we use the weather station that is the closest to
that particular segment.

(4) Incidents: We look at every accident reported in Tennessee from
January 2017 to May 2020. Incident data for this project is pro-
vided by the Tennessee Department of Transportation (TDOT).
Our data consists of approximately 78,000 accidents. The accu-
racy of the incident data was veri�ed with the Enhanced Ten-
nessee Roadway Information Management System (E-TRIMS).

5 APPROACH
We now describe how we design a pipeline (Fig. 4) to predict road-
way accidents in space and time. To begin with, we �lter out road
segments that exhibit no accidents or extremely small number of
accidents over the temporal period in consideration (about three
years). Our analysis is done on 77% of the observed accidents with
a total sparsity of 98%. Recall our goal is to learn a function 5 ( Sec-
tion 3) that outputs the likelihood of incident occurrence on a road
segment conditional on a set of features. A straightforward way
to do so is to learn a separate model over each segment. However,
such an approach results in over�tting; each segment contributes a

Figure 4: Overview of our approach. We extract spatial temporal in-
formation from a variety of data sources, focus on heterogeneity
not explicitly modeled in the feature space by identifying clusters,
perform synthetic sampling to address sparsity, and learn models
on incident occurrence.

relatively small amount of data which ignores structural similarities
between patterns of incident occurrence across the entire spatial
region in consideration. The other approach is to learn one model
for the entire area. However, a universal model fails to capture any
heterogeneity that is not explicitly modeled in the feature space. In
order to balance these considerations, we try to identify segments
that observe similar patterns for incident occurrence [3, 4]. While
it is possible to identify distinct spatial regions (hotspots) and learn
a separate model for each area, it is possible that there exists gen-
eralizable information in the entire area that is spatially invariant.
In order to do so, we seek to identify common areas irrespective
of spatial contiguity by clustering all the available segments based
on their frequency of incident occurrence. In this study, we used
the well known k-means algorithm [31] to group the segments into
distinct clusters.

Given clusters of roadway segments that share similar patterns
of spatial-temporal incident occurrence, learning the patterns is still
challenging due to the sparsity of the data. To address this concern
we perform synthetic under-sampling and over-sampling to balance
our data. However, naive synthetic sampling performs poorly in
our case since the relative frequencies of incident occurrence are
markedly di�erent among the clusters. Therefore it is impractical
to ‘balance’ data in each cluster in the same manner. To alleviate
this, we start with the cluster with the highest frequency of inci-
dent occurrence (cluster A, say) and perform synthetic sampling
such that the number of positive data points (spatial segments in
temporal windows that have accidents) is the same as the number
of negative data points (spatial segments in temporal windows that
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Model Clustering Resampling Acc. Prec. Rec. F1 Pear. Spear. α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 α=0 α=0.5 α=1 α=2 0 0.5 1 2 0 0.5 1 2 0 0.5 1 2 0 0.5 1 2
95.5 3.8 4.2 4.0 82.1 60.8 39.48 38.44 43.21 45.35 26.29 25.78 27.34 26.78 19.29 19.43 20.36 23.12 0.54 0.49 0.48 0.46 0.02 0.01 0.01 0.01 15.00 14.00 14.00 16.00 2.00 1.00 1.00 2.00

No 
resampling

94.0 13.8 27.4 18.2 70.4 55.2 41.54 41.88 40.04 44.90 25.30 25.16 26.93 26.73 18.98 16.78 17.41 20.23 0.54 0.47 0.42 0.42 0.00 0.00 0.01 0.01 16.00 13.00 14.00 12.00 0.00 0.00 1.00 1.00

RUS 93.0 12.8 32.3 18.3 63.1 54.7 42.90 43.41 39.97 44.36 25.07 25.38 26.01 26.94 19.07 18.05 17.00 20.41 0.56 0.52 0.46 0.46 0.00 0.00 0.01 0.00 17.00 17.00 15.00 15.00 0.00 0.00 1.00 0.00
ROS 93.0 12.8 32.3 18.3 63.2 54.7 42.83 43.90 39.80 44.74 25.14 25.33 25.88 27.22 19.02 18.25 16.61 20.06 0.56 0.51 0.46 0.45 0.00 0.00 0.01 0.00 17.00 17.00 15.00 14.00 0.00 0.00 1.00 0.00
No sample 93.0 12.5 30.9 17.7 76.6 58.4 40.79 39.44 42.57 44.81 24.44 25.14 26.21 27.79 18.55 19.39 18.95 21.45 0.53 0.41 0.43 0.44 0.02 0.01 0.01 0.01 17.00 12.00 13.00 15.00 3.00 1.00 1.00 2.00
RUS 92.3 12.1 34.4 17.8 74.2 58.1 42.69 40.96 42.16 43.75 24.66 24.75 26.20 27.78 18.93 18.69 17.18 20.08 0.54 0.48 0.42 0.40 0.01 0.00 0.00 0.01 15.00 15.00 11.00 12.00 1.00 0.00 0.00 1.00

ROS 92.4 12.2 34.2 17.9 74.2 58.1 42.78 40.89 42.71 44.22 24.58 24.84 26.18 28.29 18.87 18.66 17.04 19.90 0.54 0.48 0.42 0.41 0.01 0.00 0.00 0.01 15.00 15.00 11.00 15.00 1.00 0.00 0.00 1.00

No 
resampling

94.9 19.2 32.8 24.0 71.7 58.5 37.04 39.12 39.21 43.13 22.35 23.57 24.74 26.69 15.70 16.44 17.52 20.33 0.45 0.40 0.43 0.40 0.01 0.00 0.01 0.01 12.00 11.00 11.00 11.00 1.00 0.00 1.00 1.00

RUS 95.0 19.2 32.6 24.1 73.2 59.3 37.44 39.07 37.83 43.84 22.24 23.85 24.97 27.64 16.40 16.21 17.05 20.27 0.47 0.41 0.43 0.45 0.00 0.01 0.01 0.01 12.00 11.00 11.00 12.00 0.00 1.00 1.00 1.00
ROS 94.9 19.1 32.8 23.9 69.3 54.7 37.32 37.71 39.86 43.21 21.57 23.15 24.32 26.61 15.70 15.81 17.23 20.33 0.46 0.41 0.42 0.43 0.00 0.00 0.00 0.01 12.00 11.00 11.00 13.00 0.00 0.00 0.00 1.00
No sample 95.0 19.0 31.6 23.7 75.6 58.9 39.32 39.88 39.61 43.09 23.18 23.96 24.58 27.34 17.46 17.15 17.00 20.16 0.44 0.40 0.42 0.42 0.00 0.00 0.00 0.00 15.00 12.00 12.00 14.00 0.00 0.00 0.00 0.00
RUS 94.7 18.4 32.7 23.3 73.1 54.6 39.79 39.61 39.99 45.08 22.92 24.72 25.32 27.75 16.20 17.10 17.71 21.23 0.48 0.45 0.42 0.42 0.01 0.01 0.01 0.02 12.00 11.00 11.00 12.00 1.00 1.00 1.00 2.00

ROS 94.7 18.3 33.1 23.3 74.5 55.4 38.60 38.24 40.66 45.50 22.23 23.78 25.04 27.40 16.31 16.89 18.00 20.81 0.48 0.41 0.44 0.41 0.00 0.00 0.00 0.01 13.00 11.00 14.00 11.00 0.00 0.00 0.00 1.00

No 
resampling

95.0 19.0 31.8 23.6 78.7 63.4 40.81 38.28 39.62 44.46 23.21 22.99 24.30 26.22 16.88 16.36 16.49 19.97 0.51 0.44 0.42 0.42 0.00 0.00 0.00 0.02 13.00 12.00 12.00 11.00 0.00 0.00 0.00 1.00

RUS 95.2 19.3 30.5 23.5 67.4 56.9 39.55 38.71 40.13 42.39 23.44 23.32 24.41 27.06 16.47 17.19 17.17 20.04 0.48 0.40 0.38 0.43 0.01 0.01 0.00 0.02 13.00 12.00 13.00 13.00 1.00 1.00 0.00 2.00
ROS 95.3 18.6 27.6 22.1 79.2 64.6 41.14 39.86 40.37 45.29 23.72 23.78 25.12 26.82 17.89 16.53 16.68 20.14 0.53 0.46 0.44 0.42 0.01 0.01 0.00 0.00 16.00 13.00 11.00 14.00 1.00 1.00 0.00 0.00

Class weights 95.4 20.6 30.4 24.4 77.1 62.5 39.79 39.46 39.91 44.58 23.14 23.14 24.09 26.56 16.24 16.51 17.68 20.04 0.46 0.41 0.40 0.41 0.01 0.01 0.00 0.01 12.00 11.00 12.00 12.00 1.00 1.00 0.00 1.00

No 
resampling

95.1 18.9 30.5 23.2 79.8 62.3 41.40 38.81 39.88 43.16 22.98 23.02 24.56 26.75 16.88 16.25 16.89 19.90 0.49 0.42 0.42 0.43 0.01 0.00 0.00 0.01 12.00 13.00 11.00 12.00 1.00 0.00 0.00 1.00

RUS 95.0 19.4 32.5 24.2 73.8 57.6 39.47 39.53 40.20 44.62 23.12 23.79 23.89 27.49 16.44 17.13 18.00 20.39 0.49 0.40 0.38 0.42 0.00 0.00 0.00 0.00 13.00 10.00 12.00 12.00 0.00 0.00 0.00 0.00
ROS 95.1 18.3 28.7 22.2 80.1 63.6 40.94 39.70 40.82 44.21 23.36 23.48 24.45 26.60 16.92 16.08 16.80 20.38 0.51 0.45 0.43 0.40 0.01 0.00 0.01 0.01 13.00 13.00 11.00 12.00 2.00 0.00 1.00 1.00

Class weights 95.4 20.6 30.4 24.4 77.1 62.5 39.53 38.50 40.95 45.12 23.54 23.54 23.94 27.58 16.29 17.34 18.12 20.37 0.48 0.38 0.38 0.41 0.01 0.00 0.00 0.01 12.00 10.00 10.00 12.00 1.00 0.00 0.00 1.00

No 
resampling

94.4 14.6 26.8 18.9 74.0 58.0 40.37 40.14 40.15 44.42 25.35 25.07 25.99 26.66 18.53 16.45 17.08 20.81 0.51 0.45 0.41 0.40 0.02 0.00 0.00 0.01 12.00 15.00 12.00 14.00 3.00 0.00 0.00 1.00

RUS 94.2 13.9 26.1 18.1 61.1 50.6 44.57 45.68 40.89 44.23 25.72 25.43 26.86 27.54 18.93 19.26 16.93 19.91 0.59 0.53 0.51 0.48 0.01 0.02 0.01 0.00 16.00 17.00 15.00 15.00 2.00 3.00 2.00 0.00
ROS 94.2 13.9 26.7 18.2 61.2 50.6 44.51 45.42 40.70 44.62 25.77 25.48 27.00 27.80 18.88 19.08 16.98 19.76 0.59 0.53 0.51 0.48 0.01 0.02 0.01 0.00 16.00 17.00 15.00 15.00 2.00 3.00 2.00 0.00

No 
resampling

93.1 13.1 31.9 18.5 77.6 61.8 39.35 41.08 40.12 44.97 24.17 24.66 26.42 27.26 18.06 18.40 18.91 20.92 0.47 0.45 0.42 0.37 0.02 0.00 0.01 0.01 13.00 15.00 12.00 12.00 3.00 0.00 1.00 1.00

RUS 93.0 12.7 30.8 S 74.2 57.1 43.46 41.76 42.50 45.17 24.67 26.08 26.56 28.36 19.36 19.85 17.47 21.08 0.55 0.48 0.49 0.46 0.00 0.01 0.00 0.01 16.00 13.00 15.00 12.00 0.00 1.00 0.00 1.00

ROS 93.0 12.8 30.9 18.0 74.3 57.0 43.57 41.31 42.71 45.08 24.77 26.13 26.41 28.52 19.32 20.02 17.29 20.98 0.57 0.49 0.48 0.45 0.00 0.01 0.00 0.01 17.00 13.00 15.00 12.00 0.00 1.00 0.00 1.00

Correl-
ation

Total travel distance of responders per accident  (km) Average number of unattended accidents Maximum number of unattended accidents
p =10 p=15 p=20 10 15 10 15

LR

No cluster

clustering

NN

No cluster

clustering

ZIP

No cluster

Tree

No cluster

clustering

Classification Metrics

clustering

Naive

Conclusions
• Understanding incident likelihood and resource demand across fine-grained road structure is hard. We have developed a set

of techniques and models that can estimate the likelihood well for 20 % of the segments that see 80% of the incidents.
• We are working on a different set of techniques to handle extreme sparsity for the other segments. Future work includes

development of detection and design of allocation and dispatch algorithms.


